Registration No : \square
Total Number of Pages : 02
M.Tech

P2SUCC10

$2^{\text {nd }}$ Semester Regular / Back Examination 2018-19 COMPOSITE STRUCTURES
 BRANCH : SOIL MECHANICS \& FOUNDATION ENGG, STRUCTURAL \& FOUNDATION ENGG, STRUCTURAL ENGG
 Max Marks : 100
 Time: 3 Hours
 Q.CODE : F558

Answer Question No. 1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.
 The figures in the right hand margin indicate marks.

Part-I

Q1 Only Short Answer Type Questions (Answer All-10)
a) State the special features of composites compared to isotropic materials.
b) State the no of independent elastic constants in an isotropic material and in an orthotropic material.
c) What is the role of transformation matrix, $[T]$ in composite structures?
d) Define Poisson's ratio, $v_{x y}$.
e) Explain the difference between PMC and CMC.
f) Name the $[\mathrm{A}],[\mathrm{B}]$ and $[\mathrm{D}]$ matrices.
g) Distinguish between symmetric and antisymmetric laminates with examples.
h) What do you mean by transverse isotropy?
i) State the various types of stresses which act at any point in a composite laminate subjected to external loading.
j) Distinguish between micromechanics and macromechanics.

Part- II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)
a) Develop the mathematical equations for stress- strain and strain-stress relationship for a specially orthotropic material.
b) What are the important observations in the relationship of stress-strain in the specially orthotropic material.?
c) In a composite laminate, distinguish between principal material axis system and reference axis system. Draw suitable figures to explain it.
d) Explain the characteristics of B matrix in a composite laminate.
e) Determine the Poisson's ratio $v_{x y}$ at an angle $\theta=45^{\circ}$ with the fiber direction for a material with the following properties. $\mathrm{E}_{1}=2 \mathrm{E}_{2}, \mathrm{E}_{6}=0.5 \mathrm{E}_{2}$ and $\mathrm{v}_{12}=0.25$.
f) Develop the transformation matrix, T wrt strain, when transformed from principal material axis, 1-2 to the reference axis, $x-y$.
g) Develop the constitutive relationship for a specially orthotropic material.
h) Explain if the laws of stress and strain transformation are independent of material properties.
i) Draw the diagrams to show the variation of Young's modulus values for E_{11}, and E_{22} with the variation in ply angle for a unidirectional lamina. Show some typical calculations.
j) If the weight of the matrix is 40% of the weight of the composite, calculate the fibre volume fraction. The specific gravity of fibre and matrix are 2.6 and 1.2 respectively.
k) Show that bending-extension coupling stiffnesses are zero for a symmetric laminate. Consider a 3 layered composite to derive the values.
I) State the assumptions of CLPT.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Q3 For a FRP composite of unidirectional lamina with fibre orientation of 30 degree, calculate the compliance matrix, stiffness matrix and transformed reduced stiffness matrix if $E_{11}=130$ $\mathrm{GPa}, \mathrm{E}_{22}=10 \mathrm{GPa}, \mathrm{G}_{12}=7.1 \mathrm{GPa}$, and $v_{12}=0.3$.

Q4 Compute the A and B matrix for a [-45/45/-45] laminate if $E_{1}=130 \mathrm{GPa}, \mathrm{E}_{2}=8 \mathrm{GPa}, \mathrm{E}_{6}=6$ GPa, $v_{12}=0.3$ and thickness of each lamina is 0.5 mm .

Q5 For a 30/0/30 symmetric laminate subjected to $\mathrm{N}_{\mathrm{x}}=100 \mathrm{MPa}-\mathrm{mm}$ thrust, calculate the resultant stresses along the reference axis for each lamina. $\mathrm{E}=130 \mathrm{GPa}, \mathrm{E}=10 \mathrm{GPa}$, thickness of each layer is $0.1 \mathrm{~mm}, v_{12}=0.3$.

Q6 Derive the Navier's solution for finding deflection at the centre of a rectangular orthotropic laminate with all edges simply supported.

