| Registration no: | | | | | | | | | | | |------------------|--|--|--|--|--|--|--|--|--|--| |------------------|--|--|--|--|--|--|--|--|--|--| **Total Number of Pages: 02** M.Tech PDPE208 ## 2nd Semester Back Examination 2016-17 Alternate Energy BRANCH: PRODUCTION ENGG, PRODUCTION ENGG AND OPERATIONAL MGT Time: 3 Hours Max Marks: 70 Q.CODE: Z1068 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. ## Q1 Answer the following questions: (2 x 10) (5) - a) What is a fuel Cell? How they are classified? - b) What is wind farm? List any four locations of wind farm in India. - c) Explain the function of solar chimney. - d) Explain the meaning of passive heating and cooling. - e) Explain the term air mass and albedo. - f) What is a small, mini, and micro hydro power plant - g) What is magma? - **h)** What is the process/event responsible for movement of carriers after creation of electron hole pair due to radiation? - i) Write the collector tilt angle in northern hemisphere for optimum gain in heating applications in winter season. - j) What are the parameters that influence the output voltage and current in a thermionic convertor? - Q2 a) Explain the Hall effect in MHD generator and methods adopted to overcome the limitations. State major advantages and disadvantages of MHD power generation (5) - b) What is the present status of development in fuel cell technology? Draw a simple sketch of $H_2 O_2$ fuel cell and explain its working. - Q3 a) What is sun drying and state its advantages. Differentiate between open sun drying, direct solar drying and indirect solar drying. Explain each with the help of suitable sketches. - b) Draw a neat sketch and explain the following solar geometries with significance (5) - (i) Hour angle - (ii) Solar azimuth angle - (iii) Declination angle | Q4 | a) | What is total power of a wind stream? On what factors do the performance of a wind mill depends. How the power output of wind turbines controlled and utilized? | (5) | |----|----|--|---------| | | b) | Design a rotor for a multi blade wind turbine that operates in a wind speed of 35 kmph to pump water at a rate of 7m^3 /h with a lift of 6.5 m. also calculate the angular velocity of the rotor. Data given: efficiency of the rotor to pump = 80% . $C_P = 0.3$, $\lambda = 1.0$ and air density = 1.2 kg/m^3 . | (5) | | Q5 | a) | Discuss in details about the factors influencing the design of solar PV | (5) | | | b) | An ideal PV cell produces 2.5 W at 0.5 V during certain environmental conditions. Compute the output power, current and voltage, if the cells are connected in the following arrangements, (i) When the PV cells are connected as a panel of four parallel columns and each Column has 10 series cells. (ii) When several panels are connected as array of two parallel columns and each column has four series modules. | (5) | | Q6 | a) | Explain in brief the conversion of tidal energy into electrical energy and note down how the deficiencies of simple single pool tidal system corrected in a modulated single pool tidal system. | (5) | | | b) | Describe the functioning of an open cycle OTEC plant. What are the relative advantages and limitations of floating a shore – based OTEC plants? | (5) | | Q7 | a) | Classify geothermal sources. With the help of a neat sketch describe
the working of a hot rock type geothermal power plant. List its merit,
demerits and application. | (5) | | | b) | Explain various solar thermal energy storage systems? | (5) | | Q8 | a) | Write short answer on any TWO: Instruments use to measure solar radiation | (5 x 2) | | | b) | Working of a non convective solar pond | | | | c) | Solar passive cooling techniques | | | | d) | Central tower concept of utilizing solar energy for electricity generation | | | | | | |