outon	line.c	com											
Registration No:													
Total Number of Pages: 02 bput question papers visit http://www.bputonline.com 2 nd Semester Regular Examination 2016-17 DSP Algorithm & Architectures BRANCH: SIGNAL PROCESSING AND ENGG. Time: 3 Hours Max Marks: 100 Q.CODE: Z361 Answer Question No.1 which is compulsory and any FOUR from the rest. The figures in the right hand margin indicate marks.													
Q1	a) b) c) d) e) f) g) h)	Answer the following questions: Short answer type Add 111222 with 112222 in Redundant Number System. How Pipelining and Parallel Processing improves speed and power of a sequential system? How over flow can be eliminated in Fixed Point Processor? What is the use of Sign Extension in parallel multiplication? Express carry recurrence (c_{i+1}) in terms of g_i, c_i, p_i, t_i . Compare bit-parallel, bit-serial and digital-serial system. What is node scheduling and node projection? Compute the loop bound of the following loops and state the critical loop and its iteration bound. L3: 2D Tons A B 3ns C 5ns D L1: D L2: 2D Tegure 1 Design a full adder in terms of half adder.										(2 x 10)	
Q2	a)	$R_{x^2+2}[5x^2 +$ Explain the proper exam	4 types o	of grap		•				•			(10)
	b)	bput question papers visit http://www.bputonline.con What is retiming, explain with an example. Explain the properties or retiming with suitable examples.											(10)
Q3	a)	What is Qua				ADC	deriv	e hov	w SN	Ris	depen	dent	(10)

 $\sum_{n=0}^{3} c[n]x[n]$ for the given co-efficient c[0] = -2, c[1] = 3, c[2] = 1. The values of x[k] are [0] = 1, x[1] = -3, x[2] = 7. Assume the data is given N=4 bit 2's complement encoding. Find out the LUT and the output y.

(10)

Q4 a) Implement Shift-Adder Distributed architecture (DA). How speed can be (10) increased and the size can be reduced for DA architecture?

b) A 3^{rd} order inner product defined by the convolution sum $y = \langle c, x \rangle =$

Element.

bput question papers visit http://www.bputonline.com

- **b)** Write down the algorithm for Canonic Signed Digit (CSD) conversion. (10)Write two properties of CSD numbers. Compute the carry free addition of $29_{10} = 100\overline{1}01_{SD}$ to $-9_{10} =$ $0\overline{1}1\overline{1}11_{SD}$ in SD system. Q5 a) Derive the condition for no carry propagation in Redundant Number (10)System. For (3,0,5) add 243 with 435 such that no carry will propagate. **b)** Write down the binary division algorithm. Divide $(41)_{10}$ by $(7)_{10}$ for (10)n=3. (10)**Q6** a) Derive the relationship between scheduling vector and basis vector, for broadcasting & pipelining variable. b) Obtain the design for FIR filter using Horner's rule for Broadcast input (10)and Pipelined output. Draw the DAG for digital FIR filter and Processor
 - length 6.

Q7 a) Write the algorithm for LFSR. Write down the VHDL code for LFSR of

b) Write down Winograd Algorithm. Construct a 2×2 convolution algorithm using the Winograd algorithm with m(p) = p(p-1)(p+1).

(10)

bput question papers visit http://www.bputonline.com