Registration no. \square

Total Number of Pages: 02

M.TECH
P2PRCC14
$2^{\text {nd }}$ Semester Regular Examination 2016-17
Advance Numerical Methods
BRANCH: MECHANICS, SOIL MECHANICS \& FOUNDATION ENGG, STRUCTURAL
\& FOUNDATION ENGG, STRUCTURAL ENGG, TRANSPORTATION ENGG, WATER
RESOURCE ENGG, WATER RESOURCE ENGG AND MANAGEMENT
Time: 3 Hours
Max Marks: 100
Q.CODE: 9953

Answer Question No. 1 which is compulsory and any FOUR from the rest.
The figures in the right hand margin indicate marks.
Q1 Answer the following questions: Short answer type
a) Develop a recursive power function in C language for evaluating X^{y} where X is mantissa and y is exponent.
b) What is Roll's theorem?
c) What are the different conditions for satisfying vector norm?
d) Find rational approximation of the form $\frac{a_{0}+a_{1} x}{1+b_{1} x}$
e) How can you represent a range of computer number in IEEE standard?
f) State Gaussian Quadrature for numerical integration.
g) State forward substitution method for solving a system of linear equations.
h) What is the difference between nodal points and grid points?
i) Devise the procedure for improving accuracy of Trapezoidal rule using Romberg equation by eliminating successive terms in asymptotic expansion.
j) Differentiate between interpolation and extrapolation.

Q2 a) Explain Newton- Raphson Method for solving system of nonlinear equation?
Find Error Criteria in NR method.
b) Using Gauss Elimination method, solve the following system of linear equations.

$$
\begin{array}{r}
x_{1+} x_{2+} x_{3}=6 \tag{10}\\
3 x_{1+}+3 x_{2+} 4 x_{3}=2 \\
2 x_{1+} x_{2+} 3 x_{3}=13
\end{array}
$$

Q3 a) Solve the initial value problem.
$u^{\prime}=2 t u^{2}, u(0)=1$.
With $h=0.2$ on interval $[0,0.4]$. Use fourth order classical RungeKuatta method.
b) Evaluate double integral $\int_{1}^{5}\left(\left(\int_{1}^{5}\left(\frac{d x}{(x 2+y 2) 1 / 2}\right)\right) d y\right.$.

Using trapezoidal rule with two subintervals and extrapolate.
Q4 a) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$.
Using Simpsons $3 / 8^{\text {th }}$ rule. Compare with exact solution.
b) Using Newton's backward difference interpolation, construct the interpolating polynomial that fits data.

X	0.1	0.3	0.5	0.7	0.9	1.1
$\mathrm{f}(\mathrm{x})$	-1.699.	-1.073	-0.375	0.443	1.429	2.631

Estimate value of $f(x)$ at $x=0.6$ and $x=1.0$
Q5 a) Find all Eigen values and vectors of the given matrix.
$A=\left(\begin{array}{lll}3 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 3\end{array}\right)$
b) What are Harmonic and Biharmonic equations?

Using the transformation functions, show that the Bi-Harmonic equations are invariant.

Q6 a) Using shooting method, solve the first boundary value problem.
$u^{\prime \prime}=u+1,0<x<1$
$u(0)=0, u(1)=e-1$
Use Euler Cauchy method with $\mathrm{h}=0.25$ to solve resulting system of first order initial value problems.
b) Find general solution of difference equations.
$\Delta^{2} u_{n}-3 \Delta u_{n}+2 u_{n}=0$
Is the solution bounded?
Q.7. a) Solve the boundary value problem.
$u^{\prime \prime}=u^{\prime}+1$
$u(0)=1, u(1)=2(e-1)$. Use Fourth order Runge Kutta method with $h=1 / 3$.
b). The following data for function $f(x)=x^{4}$ is given. Find $f^{\prime}(0.8)$ and $f^{\prime \prime}(0.8)$ using quadratic interpolation. Compare with exact solution. Obtain bound on truncation errors.

x	0.4	0.6	0.8
$f(x)$	0.0256	0.1296	0.4096

