Registration No :

\square

Total Number of Pages : 02
M.Tech.

P2MDCC03

$2^{\text {nd }}$ Semester Regular Examination 2017-18
 FINITE ELEMENT METHOD

BRANCH : MACHINE DESIGN, MECH. SYSTEM DESIGN, SYSTEM DESIGN
Time: 3 Hours
Max Marks: 100
Q.CODE : C852

Answer Question No. 1 which is compulsory and any FOUR from the rest.
 The figures in the right hand margin indicate marks.
 Answer all parts of a question at a place.

Q1 Answer the following questions:
a) If the highest derivative of a functional is of the order ' m ', what will be the order of derivative in essential and natural boundary conditions ?
b) What do you mean by variational principle?
c) Prove that stiffness matrix of a bar is positive semi-definite.
d) Express the shape functions of quadratic element in terms of line co-ordinates.
e) Explain finite-element discretization.
f) Define isoparametric element.
g) Write Euler-Lagrange equation for functional of one variable.
h) Write the role of preprocessor and postprocessor in FEM.
i) Draw Pascal's triangle for selection of polynomial in FEM.
j) Compare finite element method and finite difference method.

Q2 a) Crossectional area of each side of the truss is $1 \mathrm{~cm}^{2}$ and length of each side is
1 m , Young's Modulus is $2^{*} 10^{7} \mathrm{~N} / \mathrm{cm}^{2}, Q=150 \mathrm{~N}, \mathrm{R}=60 \mathrm{~N}, \mathrm{~S}=0 \mathrm{~N}$ Find out
(a) Nodal displacement of nodes where reactions are mentioned
(b) The reaction at the other supports where nodal displacements are zero

b) Find the nodal equivalent loads of a beam of length 'l' having UDL 'P' throughout its entire length.

Q3 a) Describe Kirchoff's and Mindlin's plate bending theory with neat sketches. Write the assumptions of each theory. Derive moment-curvature relation for each theory.
b) Differentiate between plane stress and plane strain problems. Write stress strain matrix for each one. Give examples for each problem.

Q4 a) Using variational principle find the shape functions and (4x4) stiffness matrix of a 2D Euler beam element.
b) Write the combined stiffness matrix of a bar and beam element in 2D. Show the DOFs with neat sketch.

Q5 a) Express the shape shape functions of 8-noded and 9-noded isoparametric elements with neat sketch.
b) Solve the following equation using Rayleigh Ritz method.

$$
\int_{0}^{1}\left[\left(\frac{d \varphi}{d x}\right)^{2}+\varphi^{2}\right] d x-40 \varphi_{a t} x=1
$$

Such that for domain $0<x<1$
At $x=0 \quad \varphi=1$
At $x=1 \quad \frac{d \varphi}{d x}=20$

Q6 a) Explain how the numerical integration is evaluated using one-point formulaand two-point formula.
b) A composite wall consists of three materials. The outer temperature is $\mathrm{To}=20^{\circ} \mathrm{C}$. Convective heat transfer takes place on the inner surface of the wall with $\mathrm{Ta}=$ $800^{\circ} \mathrm{C}$ and $\mathrm{h}=25 \mathrm{w} / \mathrm{m} 2{ }^{\circ} \mathrm{C}$. Determine he temperature distribution in the wall. Compare with analytical results.

Q7
Explain :
Galerkin's method
b) Constant strain triangle

