Registration No : \square
Total Number of Pages : 02
M.Tech. P2CTCC10

$2^{\text {nd }}$ Semester Regular / Back Examination 2017-18
 GRAPH THEORY
 BRANCH : COMPUTER ENGG,
 COMPUTER SCIENCE, COMPUTER SCIENCE AND ENGG, COMPUTER SCIENCE AND TECH., INFORMATION TECH. ENGG, INFORMATION TECH.

Time: 3 Hours
Max Marks: 100
Q.CODE : C961

Answer Question No. 1 which is compulsory and any FOUR from the rest.

The figures in the right hand margin indicate marks.
Answer all parts of a question at a place.
Q1 Answer the following questions: multiple type or dash fill up type:
a) The number of vertices with odd degree is always \qquad .
b) A vertex with minimum eccentricity in a graph (G) is called \qquad of G.
c) A graph in which all vertices are of equal degree, is called a \qquad graph.
d) Removal of any one edge from a Hamiltonian circuit generates a \qquad path.
e) A graph is a \qquad if and only if it is minimally connected.
f) A graph G has a \qquad if and only if $q(G-S)<=|S|$ for all $S \subseteq V(G)$
g) A \qquad bipartite graph has a perfect matching.
h) A non-empty connected graph G is Eulerian, if all of its vertices are of degree.
i) Every maximal planar graph ($\mathrm{n} \geq 3$) is \qquad vertexconnected.
j) Minimum number of edges whose removal makes a Connected graph G, disconnected is called as \qquad of G.

Q2 a) If Graph G has a Hamilton path, prove that $W(G-S)<=|S|+1$ for every proper subset S of V.
b) Define Cut-set matrix and Fundamental cut-set matrix with example of each

Q3 a) Define the planar Graph and prove that the following Petersen graph is nonplanar using Kuratowski's theorem.

b) Prove that the set consisting of all the circuits and the edge-disjoint union of circuits (including the null set) in a graph G is an abelian group under the ring sum operation.

Q4 a) Verify Max-flow Min-cut theorem for the following transport network:

b) Prove that in a transport network G the value of flow from source S to sink D is less than or equal to the capacity of any cut that separates S from D.

Q5 a) Describe Dijkstra's algorithm for determining the shortest path between two specified vertices in a connected weighted graph. Using Dijkstra's algorithm, find the shortest path from A to F in the weighted graph G of the following figure.

b) If two graphs G_{1} and G_{2} are 1-isomorphic, prove that the Rank of G_{1} equals the rank of G_{2} and Nullity of G_{1} equals the nullity of G_{2}.

Q6 a) What do you mean by minimum spanning tree of a weighted graph? Using the kruskal's algorithm, Find a minimum spanning tree of the weighted graphs(G1 \& G2) given in following figure:

(G1)

(G2)
b) Prove that covering ' h ' of a graph G is minimal if and only if ' h ' contains no path of length three or more.

Q7 a) Define edge connectivity and vertex connectivity of a graph. Construct a graph G with edge connectivity 4 , vertex connectivity 3 and degree of each vertex of $\mathrm{G} \geq 3$.
b) Show that the Chromatic polynomial of a graph of n vertices satisfies inequality:

$$
P_{n}(\lambda)<=\lambda(\lambda-1)^{n-1}
$$

