Registration No:							
Fotal Number of pa	ages:	3					M.TECH
							EEPC201

2ND Semester Back Examination -2015-16 POWER SYSTEM TRANSIENT

Q Code: W770x

Time: 3Hours

Max Marks: 70

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q.1 Answer all the followings:

109

109

(2x10)

- (a) What are the causes of switching surges?
- (b) How does the arc help in interrupting a circuit?
- (c) How does ferroresonance condition arises in practice?
- (d) Why the transformers in a substation are connected to the transmission line through cable?
- (e) What do you mean kilometric fault?
- (f) Can you apply superposition principle in case of power system transient Analysis, Justify it?
- (g) Write down the reflection and refraction coefficient of traveling waves in case of long transmission line.

	(h)	Why we need resistance of earthing very low?	
	(i)	Why lightning is occur?	
	(j)	What is the meaning of crest flashover and tail flashover?	
Q .2	(a)	What are the types of power system transients?	(5)
	(b)	Describe the expression for the transient recovery voltage(TRV)	
		described by Park.	(5)
Q .3	(a)	Derive the second order differential equation of traveling wave along	
		long transmission line.	(5)
	(b)	Derive the transmission coefficient in an integrated power system.	(5)
Q .4	(a)	What is called capacitance switching? Explain in detail with a restrike	
		and multiple restrike	(5)
	(b)	What would be the rise in the abnormal voltage in the transformer whe	n
		13.8kV system the current is chopped at 2.5A. Assume the stray	
		capacitance of 4000pF and the typical magnetizing current of 1.5A.	(5)
Q .5	(a)	Derive the mathematical model of lightining.	(5)
	(b)	A metal oxide arrester with a MCOV of 82kV protects a 138kV	
		transformer. Its characteristics is $I=8.76x10^{-37} $	
		linearly to 600kV in 1µs and declining to zero at 1/20 th of that rate,	
		thereafter, approaches the transformer along an overhead line of surge	
		impedance 480Ω . Estimate the peak surge voltage experienced by the	
		transformer.	(5)

Q .6	(a)	Write down the different protection systems applied in case of	
		long transmission line.	(5)
	(b)	Explain the protective shadow of a transmission tower structure and	
		classify the different types of tower.	(5)
Q .7	(a)	Explain the Insulation coordination procedures(IES) for high voltage	;
		systems.	(5)
	(b)	Explain the principle of insulation co-ordinations based on lightning	
		surges and switching surges.	(5)
Q .8	Write	short notes on :(any two)	(5x2)
	(a)	Statistical methods of insulation coordination	
	(b)	Application of arrestors for protection of lines and stations	
	(c)	Cloud formation.	