Registration No :						
<u> </u>						i

Total Number of Pages: 02 M.Tech P2ECCC05

> 2nd Semester Regular Examination 2018-19 RADAR SYSTEM ENGINEERING **BRANCH: COMMUNICATION SYSTEMS**

> > Time: 3 Hours Max Marks: 100 **Q.CODE:** F335

Answer Question No.1 (Part-1) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part- I

Q1 Only Short Answer Type Questions (Answer All-10)

 (2×10)

- What is the pulse repetition frequency of radar to achieve a maximum unambiguous range of 85 nmi.
- What is the peak power of a radar whose average transmitted power is 200W, pulse b) width of 1µs and pulse repetition frequency of 1000Hz.
- What are the operating frequency ranges of radar? c)
- How blind speed problem can be minimized in MTI radar. d)
- e) Differentiate between sequential lobing and conical scan.
- A 2.5 GHz MTI radar has unambiguous range of 160km. find the first two blind speeds. f)
- Mention the factors affecting the choice of the frequency of operation of radar. g)
- Explain major effects that limit the accuracy of the tracking radar. h)
- What factors influence phase shifting required for beam steering? i)
- j) How is the aperture efficiency different from the radiation efficiency of an antenna?

Part- II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)

 (6×8)

- What do you mean by monopulse tracking? Explain it with neat diagram. a)
- b) What is CW radar principle. How can range ambiguities be overcome in CW radar?
- What is plan position indicator in a typical surveillance radar display? Explain various c) types of PP Indicators.
- Briefly explain the working of Bistatic CW radar with Limitations. d)
- What is beam squinting and which type of feed eliminates it? e)
- what is the highest frequency that a radar can be operated if it is required to have a maximum unambiguous range of 200nmi and no blind speeds less than 600kt.
- How amplitude-comparison monopulse radar works in single angle coordinate. g)
- What is the essential difference between a pulsed Doppler radar and MTI? h)
- i) Explain the basic principle of continuous angle tracking.
- j) Describethe working principle of cassegrainantenna using hyperbolic subreflector with clear diagram.
- Derive an expression for the half-power beam-width when a phased array scans an k) angle θ_0 from the broad side and explain how scan angle affects the antenna gain.
- I) What modifications are required to enable CW radar to measure the practical range and velocity of a moving target? Explain using neat sketch.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

What is the Doppler effect? Derive the formula for Doppler shifts. Q3

(16)

A Satellite is orbiting the earth in a circular orbit at an altitude of 4500nmi has a speed of 3.5 nmi/s. What is the Doppler frequency shift for UHF radar (300MHz).

Q4 Derive radar range equation and analyze the parameters that influence the range (16) measurement.

A Ground based surveillance radar operates at a frequency of 1300MHz. Its maximum range is 200nmi with a radar cross section of one square meter. Its antenna is 12 m wide by 4 m high with aperture efficiency of 65%. The receiver minimum detectable signal is 10⁽⁻¹³⁾ W. find the following:

- a) Antenna effective aperture (square meter) and antenna gain (dB)
- b) Peak transmitted power
- c) PRF to achieve max unambiguous range of 200 nmi.
- d) Avg. transmitted power if pulse width is 2us
- e) Duty cycle
- f) Horizontal beam width (degree)
- What do you mean by reflector antennas? Discuss the different types of feed (16) placements in parabolic reflector in detail with neat schematics using examples.

Q6 Write Shorts Notes on any TWO of the following:

 (8×2)

- a) Super heterodyne radar receiver
- b) Pulse compression radar
- c) Digital MTI processing