Registration No : \square

Total Number of Pages : 02
M.Tech.

P2PRCC14
$2^{\text {nd }}$ Semester Back Examination 2017-18
ADVANCED NUMERICAL METHODS
BRANCH : ELECTRI \& ELECTRO ENGG (POWER SYSTEM ENGG), ELECTRICAL ENGG., ELECTRICAL POWER SYSTEM, GEOTECHNICAL ENGG, POWER SYSTEM ENGG, POWER SYSTEMS, SOIL MECHANICS, SOIL MECHANICS \& FOUNDATION ENGG, STRUCTURAL \& FOUNDATION ENGG, STRUCTURAL ENGG, TRANSPORTATION ENGG, WATER RESOURCE ENGG, WATER RESOURCE ENGG AND MANAGEMENT

Time: 3 Hours
Max Marks : 100
Q.CODE : C1085

Answer Question No. 1 which is compulsory and any four from the rest. The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.
Q1 Answer the following questions: Short answer type:
a) What are the basic sources of errors and how it is propagated?
b) What is meant by implicit Runge-Kutta method?
c) Discuss the geometrical interpretation of Euler's method and its characteristics.
d) What are the differences between Newtonian quadrature method and Gaussian quadrature method?
e) Find a piecewise linear interpolating polynomial of the following data

x	1	2	4	8
y	3	7	21	73

f) What is a harmonic equation?
g) Describe the working principle of predictor-corrector method in the context of iterative method.
h) Using quadratic interpolation find the derivative $f^{\prime}(2.0)$ using the following data:

x	2.0	2.2	2.6
$f(x)$	0.69315	0.78846	0.95551

i) Explain inverse power method.
j) Write the stability condition of implicit method to solve wave equation.

Q2 a) Use the data points (0,1), (1,e), (2, $\left.\mathrm{e}^{2}\right)$ and $\left(3, \mathrm{e}^{3}\right)$ to form a natural spline that approximates $f(x)=e^{x}$.
b) Find the Lagrange polynomial for $f(x)=\frac{1}{x}$ on [2,4] using the nodes $2,2.75$
and 4. Also determine the error form for this polynomials and maximum error when the polynomial is used to approximate $f(x)$ for $x \in[2,4]$.

Q3 a) Evaluate the integral $\mathrm{I}=\int_{1}^{3}\left(x^{6}-x^{2} \sin (2 \mathrm{x})\right) d x$ using Gauss quadrature method with $n=3$.
b) Evaluate the multiple integral $\int_{x=0}^{x=1} \int_{y=0}^{y=x^{2}+x} x y d x d y$ with variable limits.

Q4 a) Find $H_{5}(x)$, the Hermite polynomial that agrees with the data

\mathbf{x}	$f(x)=e^{x}$
0	1.0000000
1	2.7182818
2	7.3890561

to find an approximation of $H_{5}(0.25)$.
b) Solve the boundary value problem $u^{\prime \prime}=u+x, u(0)=0$,
$u(1)=0$ with $h=\frac{1}{4}$ by using the Second order method.
Q5 a) Find the largest Eigen value of the matrix $\left[\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right]$.Perform three Iterations.
b) Find the Eigen values using QR methodfor the matrix
$\left[\begin{array}{ccc}-2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$.Perform three Iterations.
Q6 a) Using finite difference method, solve the following boundary value problem:
$y^{\prime \prime}=x y^{\prime}-y-x^{2}$ subject to $y(0)=-2$ and $y(1)=1$ with $h=0.25$.
b) Solve the boundary value problem $\frac{d^{2} y}{d x^{2}}=\frac{2}{1+x} y^{2}$ subject to $y(0)=1$ $\operatorname{and} y(1)=0.5$ (assume $h=0.25$).

Q7 a) Using implicit Crank-Nicolson method solve the heat equation
$\mathrm{u}_{\mathrm{t}}-\mathrm{u}_{x x}=0$ subject to the initial conditions $u(x, 0)=0$ and boundary conditions: $u(0, t)=0$ and $u(1, t)=t$, where $0 \leq x \leq 1$ and $t>0$. (Use $h=$ $\frac{1}{2}$ and $k=\frac{1}{8}$).
b) Solve theequation $16 u_{x x}=u_{t t}$ given that $u(0, t)=0$ and
$u(5, t)=0, u(x, 0)=x^{2}(x-5)$ and $u_{t}(x, 0)=0$ by taking $\mathrm{h}=1$ and upto 5 times steps.

