1st Semester Back Examination 2017-18 **Advanced Fluid Mechanics BRANCH: WATER RESOURCE ENGG AND MANAGEMENT**

> Time: 3 Hours Max Marks: 70 Q.CODE:B813

Answer Question No.1 which is compulsory and any five from the rest.

		The figures in	n the right han	d margin i	ndicate m	arks.	
Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: When the streamlines, streaklines and pathlines coincide? What is a doublet? Define momentum thickness. What do you mean by fully developed flow? For the flow defined by stream function ψ = xy, determine the vorticity components. Write down Navior- Stokes equations for steady, incompressible flow in rectangular Cartesian coordinate system. Write the methods to control boundary layer separation. What do you mean by geometric similarity? Differentiate between undistorted models and distorted models. Differentiate between wall turbulence and free turbulence.					(2x10)
Q2	a) b)	Derive the integral form of continuity equation starting from the statement of law of conservation of mass for a control volume. Differentiate between the Eulerian and Lagrangian method of representing a fluid.					(5) (5)
Q3	a) b)	Differentiate between control mass and control volume system. A stream function is given as $\psi = x^2 - y^2$. Determine whether the flow is rotational or irrotational. How much discharge is passing through the points (1,2) and (2,2).					(4) (6)
Q4	, , , , , , , , , , , , , , , , , , , ,						(4)
	b)	velocity potential function A source of strength 0.8 m²/s located at (-1, 0) is combined with a sink of strength 1 m²/s located at (1, 0). Find the velocity components at point (2, 1).					
Q5	a)	Outline the procedure used in the Buckingham's $\boldsymbol{\pi}$ theorem of dimensional analysis.					(4)
	b)	·					
Q6	a) b)	A smooth flat plate with a sharp leading edge is placed at zero incidence in a free stream of water flowing at 3 m/s. Determine the distance from the leading edge where the transition from laminar to turbulent flow may commence. The viscosity of water is 1 centi poise. Calculate the boundary layer thickness at the transition point. State and explain Von- Karman momentum integral equation.					(5) (5)
Q7	a)	·					(5) (5)
	b)	interval at a point. u (cm/s) 15 27 v (cm/s) 4 -5 Find $\overline{u'v'}$. How would you distinguish boundaries? Give the expression of the express	33 -3 uish between h	-3 12 ydrodynami	9 7 cally smoo	21 9 oth and rough	(5)
Q8		number for laminar and tur Write short notes on any		owing :			(5 x 2)
	a)						` '

b) Potential flow

c) Dispersion of pollutants in a fluid medium