Registration No:					

Total Number of Pages: 02 M.Tech. P1IPBC04

1st Semester Regular/Back Examination 2017-18 ADVANCED POWER SYSTEMS BRANCH: INDUS. POWER CONTROL AND DRIVES

Time: 3 Hours Max Marks: 100 Q.CODE: B996

		Q.CODE: B996	
		Answer Question No.1 is compulsory and any four from the rest. The figures in the right hand margin indicate marks.	
Q1	a)	Answer the following questions: <i>multiple type or dash fill up type</i> The necessary condition for representing a transmission line with a voltage regulating transformer of off-nominal tap ratio 'a' using pi-model is	(2 x 10)
	b)	The total number of load flow variables for an n-bus power system are, i) N ii) 2n iii) 3n iv) 4n	
	c)	Which fault gives identical values for the +ve, -ve, and zero sequence currents? i) L-G ii) L-L-G iii) L-L iv) L-L-L	
	d)	If, penalty factor of a plant is '1', the incremental transmission loss may be, i) 1 ii) >1 iii) 0 iv) <0	
	e)	In the optimal power flow problem, the vector of independent variables may include and variables.	
	f)	The failure rate is given by, = K/nN , where 'K' represents	
	g) h) i) j)	The major cause of voltage sag is Name a device that acts as a source of harmonic injection, The expression of load factor is Any two factors affecting load forecasting are and	
Q2	a)	Formulate the optimal hydro-thermal scheduling problem considering the inequality constraints of thermal generation and water availability using penalty functions as suitable.	(10)
	b)	Explain rigid limit and soft limit as regards to selection of penalty function.	(10)
Q3	a)	Describe the procedure for modelling of a transmission line with a voltage regulating transformer of off-nominal tap ratio 'a' using pi-model and indicate the equivalent circuit for the case.	(10)
	b)	Compare the short transmission line model with that of the long transmission line model showing the application of each model.	(10)
Q4	a)	Discuss the step wise procedure for implementation of Fast Decoupled Load	(10)
	b)	Flow with a clear presentation of the algorithm/flow chart. Write the Jacobian Matrix for the Newton Raphson Load Flow and indicate the method of its formation.	(10)
Q5	a)	Derive the equation for voltage sag in terms of fault level and impedances,	(10)
	b)	separately. Plot the characteristics of voltage sag as a function of the length of fault point from the PCC.	(10)

Q6	a)	Discuss clearly the mitigation methods used in practice for mitigation of voltage sag.	(10)
	b)	Give a clear comparison between series voltage controller and a shunt voltage controller, in view of their application and performance.	(10)
Q7	a)	Give a detail explanation of multi-area power interchange mechanism used in deregulated power industry. How do market design and auction mechanism affect the power interchange schedule? Explain with example.	(10)
	b)	Discuss the methods of small area load forecast and spatial load forecast.	(10)