Registration No:					

Total Number of Pages: 02 M.Tech
P1ECBC03

1stSemester Regular/Back Examination 2017-18 INTEGRATED CIRCUIT DESIGN

BRANCH: COMMUNICATION ENGG, COMMUNICATION SYSTEMS, ELECTRO COMM. ENGG, ELECTRO AND TELECOMMUNICATION ENGG, SIGNAL PROCESSING AND COMMUNICATION, SIGNAL PROCESSING AND ENGG, VLSI EMBEDDED SYSTEMS, VLSI EMBEDDED SYSTEMS DESIGN, WIRELESS COMMUNICATION TECH.

Time: 3 Hours Max Marks: 100 Q.CODE: B921

Answer Question No.1 and 2 which are compulsory and any four from the rest.

The figures in the right hand margin indicate marks.

Assume values wherever missing

Q1 Answer the following questions:

(2 x 10)

- a) A 70 nm long transistor has a gate oxide thickness of 12 Å. What is its gate capacitance in (F/μm)?
- **b)** For the nMOS enhancement mode transistor, calculate the drain current for $V_G = 3 \text{ V}$, $V_S = 1 \text{ V}$, $V_D = 4 \text{ V}$, $V_{T0} = 1 \text{ V}$. Assume $k_n = 200 \mu \text{A/V}^2$.
- c) Find the amount of energy required to charge and discharge a capacitive load of the CMOS inverter. Assume load capacitance, $C_L = 6 \, fF$ and power supply voltage, $V_{DD} = 2.5 \, V$. Also, find the dynamic power dissipation of the circuit if the inverter is switched at the maximum possible rate of $2 \times \tau_p$, where $\tau_p = 32.5 \, \mu s$
- **d)** If a domino gate input is initially a '1' at the start of evaluation, can it make any other transition during evaluation? Why or Why not?
- e) What is a Cascode Amplifier? Enlist one of its uses.
- f) What is ATE? What are its main components?
- g) Differentiate between Source Memory and Capture Memory.
- Mention one method by which DC voltage trimming is accomplished in Mixed Signal Testing.
- i) What is the range of operation of mm wave IC and Terahertz IC?
- i) What is a GNRFET?
- Q2 a) For a CMOS inverter with the following parameters: $V_{DD} = 3V$, Vtn = 0.6V, Vtp = -0.82V, $k' = 100\mu A/V^2$, $\mu n = 2.2\mu$: Determine the beta ratio, $\Omega_{\rm n}/\Omega_{\rm p}$, for a midpoint (switching threshold) of $V_{\rm M} = 1.3V$. Also Determine the relative device widths, $W_{\rm p}/W_{\rm n}$, for V = 1.3V.
 - b) i) What is the oxide capacitance, C_{ox} , if the gate oxide of an nMOS transistor is 50nm thick? (10)
 - ii) If $Cox = 30 \text{ nF/cm}^2$, $W=1.5\mu m$ and $L=0.5\mu m$, what is the gate capacitance, Cg?
 - iii) If Cg = 1fF and V_{tn} = 0.5V for the nMOS transistor, what is the value of the channel charge, Q_e when V_G =1V?
 - iv) For pMOS transistor, if Cg = 1fF, Vtp = -0.5V, and VDD=2.5V, what is the value of

- Q3 a) Draw the small signal equivalent of a simple current mirror. Derive its gain. Enlist the factors affecting the accuracy of Current Mirror.
 - b) What are the different performances parameters of OPAMP? (10)
- Q4 a) Derive the complete small-signal model for an NMOS transistor with I_D = 100 μ A, (10) V_{SB} =1 V, V_{DS} = 2 V. Device parameters are φ_F = 0.3 V, W = 10 μ m, L = 1 μ m, γ = 0.5 V^{1/2}, κ = 200 μ A/V², λ = 0.02 V⁻¹, t_{ox} = 100 Angstroms, ψ_0 = 0.6 V, C_{sb0} = C_{db0} = 10 fF. Overlap capacitance from gate to source and gate to drain is 1 fF. Assume C_{qb} =5 fF.
 - b) What is a Cascode Amplifier? Draw its Small signal equivalent. (10)
- Q5 a) Discuss about the different Test and Diagnostic Equipment used in Mixed Signal testing. Enlist some Mixed-Signal Testing Challenges.
 - b) With suitable structures write a brief note on any one of the following. (10)
 - (i) Organic FET
 - (ii) LDMOS
 - (iii) HEMT
- Q6 a) What is the use of Arbitrary Waveform Generators and Waveform Digitizers in MixedSignal Testing? Use suitable diagrams to aid your answer.
 - b) How Clocking and Synchronization in a mixed-signal tester performed? Illustrate. (10)
- Design a circuit described by the function $Y = \overline{A \cdot (B+C) \cdot (D+E)}$ using CMOS logic.

 Also find the equivalent CMOS inverter circuit for simultaneous switching of all inputs (W)

assuming that $\frac{\left(\frac{W}{L}\right)_p}{}=5$ for all pMOS transistors and $\frac{\left(\frac{W}{L}\right)_n}{}=2$ for all nMOS transistors. Draw the Layout of Y.

b) For a CS stage with R_L = 1k Ω . If I_D = 1mA, $\mu_n C_{ox}$ =100 μ A/V², W/L=10/0.18, V_{TH} = 0.5 (10) V, and λ = 0, find out the region of operation of the transistor. Let V_{DD} =1.8V.