$1^{\text {st }}$ Semester Regular/Back Examination 2017-18 INTEGRATED CIRCUIT DESIGN

BRANCH: COMMUNICATION ENGG, COMMUNICATION SYSTEMS, ELECTRO COMM. ENGG, ELECTRO AND TELECOMMUNICATION ENGG, SIGNAL PROCESSING AND COMMUNICATION, SIGNAL PROCESSING AND ENGG, VLSI EMBEDDED SYSTEMS, VLSI EMBEDDED SYSTEMS

DESIGN, WIRELESS COMMUNICATION TECH.
Time: 3 Hours
Max Marks: 100
Q.CODE: B921

Answer Question No. 1 and 2 which are compulsory and any four from the rest.
 The figures in the right hand margin indicate marks.
 Assume values wherever missing

Q1 Answer the following questions:
a) A 70 nm long transistor has a gate oxide thickness of $12 \AA$. What is its gate capacitance in ($\mathrm{F} / \mu \mathrm{m}$) ?
b) For the nMOS enhancement mode transistor, calculate the drain current for $\mathrm{V}_{\mathrm{G}}=3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} 0}=1 \mathrm{~V}$. Assume $\mathrm{k}_{\mathrm{n}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$.
c) Find the amount of energy required to charge and discharge a capacitive load of the CMOS inverter. Assume load capacitance, $C_{L}=6 f F$ and power supply voltage, $V_{D D}=2.5 \mathrm{~V}$. Also, find the dynamic power dissipation of the circuit if the inverter is switched at the maximum possible rate of $2 \times \tau_{p}$, where $\tau_{p}=32.5 \mu s$
d) If a domino gate input is initially a ' 1 ' at the start of evaluation, can it make any other transition during evaluation? Why or Why not?
e) What is a Cascode Amplifier? Enlist one of its uses.
f) What is ATE? What are its main components?
g) Differentiate between Source Memory and Capture Memory.
h) Mention one method by which DC voltage trimming is accomplished in Mixed Signal Testing.
i) What is the range of operation of mm wave IC and Terahertz IC?
j) What is a GNRFET?

Q2 a) For a CMOS inverter with the following parameters: $V_{D D}=3 \mathrm{~V}, \mathrm{Vtn}=0.6 \mathrm{~V}, \mathrm{Vtp}=$ $-0.82 V, k^{\prime}=100 \mu A / V^{2}, \mu n=2.2 \mu$: Determine the beta ratio, B_{n} / β_{p}, for a midpoint (switching threshold) of $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$. Also Determine the relative device widths, $\mathrm{W}_{\mathrm{p}} / \mathrm{W}_{\mathrm{n}}$, for $V=1.3 \mathrm{~V}$.
b) i) What is the oxide capacitance, C_{ox}, if the gate oxide of an nMOS transistor is 50 nm thick?
ii) If $\mathrm{Cox}=30 \mathrm{nF} / \mathrm{cm}^{2}, \mathrm{~W}=1.5 \mu \mathrm{~m}$ and $\mathrm{L}=0.5 \mu \mathrm{~m}$, what is the gate capacitance, Cg ?
iii) If $\mathrm{Cg}=1 \mathrm{fF}$ and $\mathrm{V}_{\mathrm{tn}}=0.5 \mathrm{~V}$ for the nMOS transistor, what is the value of the channel charge, Q_{e} when $\mathrm{V}_{\mathrm{G}}=1 \mathrm{~V}$?
iv) For pMOS transistor, if $\mathrm{Cg}=1 \mathrm{fF}, \mathrm{Vtp}=-0.5 \mathrm{~V}$, and $\mathrm{VDD}=2.5 \mathrm{~V}$, what is the value of

Q3 a) Draw the small signal equivalent of a simple current mirror. Derive its gain. Enlist the factors affecting the accuracy of Current Mirror.
b) What are the different performances parameters of OPAMP?

Q4 a) Derive the complete small-signal model for an NMOS transistor with $I_{D}=100 \mu \mathrm{~A}$, $V_{S B}=1 \mathrm{~V}, V_{D S}=2 \mathrm{~V}$. Device parameters are $\varphi_{F}=0.3 \mathrm{~V}, W=10 \mu \mathrm{~m}, L=1 \mu \mathrm{~m}, \gamma=0.5$ $\mathrm{V}^{1 / 2}, k=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=0.02 \mathrm{~V}^{-1}, t_{o x}=100$ Angstroms, $\psi_{0}=0.6 \mathrm{~V}, C_{s b 0}=C_{d b 0}=10 \mathrm{fF}$. Overlap capacitance from gate to source and gate to drain is 1 fF . Assume $C_{g b}=5 \mathrm{fF}$.
b) What is a Cascode Amplifier? Draw its Small signal equivalent.

Q5 a) Discuss about the different Test and Diagnostic Equipment used in Mixed Signal testing. Enlist some Mixed-Signal Testing Challenges.
b) With suitable structures write a brief note on any one of the following.
(i) Organic FET
(ii) LDMOS
(iii) HEMT

Q6 a) What is the use of Arbitrary Waveform Generators and Waveform Digitizers in Mixed Signal Testing? Use suitable diagrams to aid your answer.
b) How Clocking and Synchronization in a mixed-signal tester performed? Illustrate.

Q7 a) Design a circuit described by the function $Y=\overline{A \cdot(B+C) \cdot(D+E)}$ using CMOS logic. Also find the equivalent CMOS inverter circuit for simultaneous switching of all inputs assuming that $\left(\frac{W}{L}\right)_{p}=5$ for all pMOS transistors and $\left(\frac{W}{L}\right)_{n}=2$ for all nMOS transistors. Draw the Layout of Y .
b) For a CS stage with $R_{L}=1 \mathrm{k} \Omega$. If $\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~W} / \mathrm{L}=10 / 0.18, \mathrm{~V}_{\mathrm{TH}}=0.5$ V , and $\lambda=0$, find out the region of operation of the transistor. Let $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$.

