Reg	istra	ation No:			
Total Number of Pages: 02 M. Tech					
HTPC10 ⁻					
1 st Semester Back Examination 2017-18 ADVANCE FLUID MECHANICS					
BRANCH: HEAT POWER & THERMAL ENGG, THERMAL POWER ENGG					
Time: 3 Hours Max Marks: 70					
Q.CODE: B812 Answer Question No.1 which is compulsory and any five from the rest.					
The figures in the right hand margin indicate marks.					
Q1		Answer the following questions: (2 x 10			
	a)	Water temperature in an open container changes from T=20°C at top to T=10°C at bottom. Is the water continuous with respect to temperature and density?			
	b)	For steady, inviscid, incompressible and irrotational flow, Bernoulli's equation is			
	c)	applicable only along stream line. True/False? Explain. Is it necessary to invoke stokes hypothesis for incompressible flow? Explain.			
	d)	For a two dimensional flow $\vec{V} = 2x^2yi - 2yx^2j$. Does it represent a possible			
	e)	flow? Is velocity potential defined here?			
	-,	The elements of stress tensor at a point is given as $\begin{bmatrix} 1 & 4 \\ 4 & 3 \end{bmatrix}$. Can the continuum			
	f) g)	in which this tensor exists be a fluid? Explain. Define stagnation pressure for incompressible and compressible flow.			
		For incompressible flow, $\frac{D\rho}{Dt}=0$. Does it mean that ρ is constant in the flow?			
		Explain.			
	h)	In most of the cases flow is viscous. In this regard, does the study of potential flow (inviscid flow) theory have any relevance?			
	i)	A cylinder is dragged sidewise towards right and is made to rotate clockwise in a fluid medium. What will be the direction of the Lift force i.e. upward or down			
	_	ward? Explain.			
	j)	In a fully developed laminar flow through a pipe, the shear stress on the centerline is zero. Can Bernoulli's equation be applied along the pipe centre			
		line?			
Q2	a) b)	Explain the Eulerian and Lagrangian description of flow. (5) Show that the deformation tensor D is a second rank tensor. Here (5)			
		$d_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$. Note that transformation rules for vectors are: $a_i = l_{ij} a_j'$			
		and $a_i'=l_{ji}a_j$. For tensors $T_{ij}=l_{im}l_{jn}T_{mn}'$ and $T_{ij}'=l_{im}l_{nj}T_{mn}$.			
Q3	a) b)	Explain the stream function and velocity potential. A long pipe is connected to a large reservoir that initially is filled with water to a depth of 3m. The pipe is 150mm in diameter and 6m long. Determine the flow velocity leaving the pipe as a function of time after the cap is removed from its free end. Assume the flow to be frictionless and incompressible. State any other			

assumptions clearly.

Q4	a) b)	Derive the Navier Stokes equations for compressible flow. What is Prandtl's mixing length theory? Explain	(5) (5)
Q5	a) b)	Explain the Hiemenz flow. What is Hagen-Poiseuille flow? Explain	(5) (5)
Q6	a) b)	Explain Karman's velocity defect law. What is Karman's velocity defect law? Explain.	(5) (5)
Q7		Derive an equation for the speed of the sound in a medium and show that for an ideal gas, $C=\sqrt{\gamma RT}$, where C is the speed of sound and γ is the ratio of specific heats.	(10)
Q8	a) b) c) d)	Write short answer on any TWO: Strain rate tensor Hydrodynamic lubrication Stokes and Oseen's approximation Universal velocity distribution	(5 x 2)