$1^{\text {st }}$ Semester Regular/Back Examination 2017-18 Advanced Data Structure and Algorithms BRANCH: COMPUTER SCIENCE, COMPUTER SCIENCE AND ENGG, INFORMATION TECH.

Time: 3 Hours
 Max Marks: 100
 Q.CODE: B990

Answer Question No. 1 which is compulsory and any FOUR from the rest.

The figures in the right hand margin indicate marks.
Q1 Answer the following questions: Short answer type
a) Define a segment tree with example.
b) What are Binomial Heaps? What are its applications?
c) Define time complexity of an algorithm.
d) Differentiate best case and worst case time complexity.
e) What is TV-tree? Give an example.
f) Define asymptotic notations.
g) Prove that $5 n^{2}+6 n+7=\Omega\left(n^{2}\right)$.
h) Explain NP Hard and NP Complete problem.
i) What is the space complexity of following algorithm?
void N() \{ int P,A,B,C; $P=A+B-C ;$ printf("\%d", P)
\}
j) Illustrate the steps involved in analyzing using an example algorithm.

Q2 a) Write Dijkstra's algorithm and use it to find single source shortest path for the following graph:

b) What is a red-black tree? Draw a red-black tree using following datasets: 8, $18,5,15,17,25,40,62,78$, and 90.

Q3 a) Define LCS algorithm. Find the longest common subsequence in "acbaedgh" and "habcadfg".
b) Explain dynamic programming with example.

Q4 a) Solve the following knapsack problem with given capacity $W=5$ using dynamic programming:

Item	Weight	Value
1	2	$\$ 12$
2	1	$\$ 10$
3	3	$\$ 20$
4	2	$\$ 15$

b) Create a B-tree of order 5 from the following data sets: 15, 20, 35, 95, 13,10,
$50,65,5,70,30,40,45,80,25,6,22$ and 33.

Q5 a) State and prove the Cook's theorems.
b) Use Floyd-Warshall Algorithm in the following directed graph:

Q6 a) What is the difference between binomial heaps and lazy binomial heaps? Give example.
b) What is a trie data structure? Construct a trie that stores the following keys: AEROPLANE, BICYCLE, BIKE, BUS, CAR, CARRIAGE, and TRAIN.

Q7 a) Write matrix chain multiplication algorithm by using dynamic programming approach. Find the optimal sequence of matrix multiplication for the dimensions of matrices $<5,4,6,2,7>$.
b) What do you mean by order of growth function? Arrange the following functions in increasing order $n \log n, n^{2}, n!, 2^{n}, \log n$.

