(5)

(5)

(5)

(5)

(5)

Registration no:															
Total Number of Pages: 02 M.Tech ETPC101															
1 st Semester Back Examination 2017-18 MODERN DIGITAL COMMUNICATION TECHNIQUES BRANCH: COMMUNICATION ENGG, COMMUNICATION SYSTEMS, ELECTRO & COMM. ENGG, ELECTRO & TELECOMMUNICATION ENGG Time: 3 Hours Max Marks: 70 Q.CODE: B927 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.															
Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: What are the advantages of non-linear quantization over linear quantization? Compare between natural sampling and flat-top sampling. Draw Differential and Manchester line codes for an input bit stream 10111001 State the sequence of generation of source code, line code and channel code. State the importance of basic SNR parameter E_b/N_0 in digital communication. What is roll-off factor of a pulse shaping filter? What is its range? State advantages and disadvantages of M-ary over binary data transmission. What is an anti-podal signal? State the probability of error, P_B , in case of an anti-podal signal. Draw the trellis diagram for the input sequence [0 1 1 0 1 0 0 0]. State advantages of spread spectrum technique.											(2 x 10)		
Q2	a) b)	Explain in details about the partially Coherent Receiver. Explain IQ modulation and demodulation.									(5) (5)				
Q3	a) b)	How DPCM is neat block dia A television s 20% above the bits to obtain and the minin	agram signal ne Ny a PCI	s of it has a quist M sig	ts trar a BW rate nal. D	nsmitt of 7. and b etern	ter an .5 Mb oinary nine t	d recented the determinant of th	eiver. ne sig ed wit nary p	nal is h a c oulse	s sam ode d rate ii	pled of wo	at a ra d leng	ite of th 8-	(5) (5)
Q4	a)	Represent a	White	nois	e with	n orth	ogon	al wa	vefor	ns ar	nd de	rive t	ne vari	ance	(5)

b) What is a matched filter? Derive the transfer function of a matched filter.

Q5 a) What is ISI? Explain how it affects digital data transmission. How can it be

Derive the processing gain and performance of the system.

equalization filters used in reducing ISI.

to (1/p), where 'p' is the number of chips.

b) Explain how equalization filter helps in reducing ISI. Explain various types of

Show that PN-auto- correlation function in a spread spectrum system is equal

Describe a direct sequence spread spectrum signal transmission system.

Q6 a)

reduced?

What is MSK? What is the value of deviation ratio ,h for MSK? Explain the operation of an MSK system in detail along with neat diagrams of its transmitter and receiver.

Q8 Write short answer on any TWO :

(5 x 2)

- a) Tapped-delay prediction filter
- b) Range equation of an antenna
- c) S-ALOHA and R-ALOHA
- d) Binary PSK receiver