

Registration no:

Total Number of Pages: 02

M.Sc.I FMCC701

(2 x 10)

(5)

7th Semester Regular Examination 2017-18 Topology Branch: M.Sc.I (MC) Time: 3 Hours Max Marks: 70 Q. CODE: B625

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

- a) Define Subspace and Hereditary Property.
- **b)** Define limit point and derived set.
- **c)** Consider **X** ={x, y, z}, **T**= { $\boldsymbol{\varphi}$, {x}, {y, z}, X}, Y = {p, q, r}, **V** ={ $\boldsymbol{\varphi}$, {r}, {p, q}, Y}. (**X**. **T**) and (**Y**,**V**) are two topological spaces. Consider the map . (i) f(x) =r, f(y)= p, f(z)=q discuss continuity and openness.
- **d)** Define 1st and 2nd countable base.
- e) Define Homeomorphism.
- f) Define Continuity with an example.
- g) Define open map, closed map, define topological property.
- **h)** Define Hausdorff space with an example.
- i) Define locally connected set with an example
- **j)** Define Compactness.
- Q2 a) Let X be a non-empty set **F** a family of subsets of X such that

[F:1] : φ ∈F, X∈F

 $[\mathsf{F}:2]: \ F_1 \in \mathsf{F}, \ F_2 \in \mathsf{F} \Rightarrow \ (F_1 U F_2) \in \mathsf{F}$

 $[F:3]: \mathbf{F}_i \in \mathbf{F}, \text{ for all } i \in \mathbf{I} \implies \bigcap \mathbf{F}_i \in \mathbf{F} \text{ for all } i \in \mathbf{I}$

Then there is an unique topology \mathbf{T} on \mathbf{X} s. t. the \mathbf{T} closed subsets are precisely the members of \mathbf{F} .

- b) Let (X, T) be a topological space and let a be a subset of X. the set A is T (5) open iff A contains a T neighborhood of each of its points.
- Q3 a) The (X,T) be a topological space and let $A \subset X$. Then A is a T-closed iff $A' \subset A$. (5)
 - b) Let (Y, V) be a subspace of (X,T). If (Z,W) is a subspace of (Y, V) then (5) (Z,W) is also a subspace of (X,T).
- Q4 a) Let X, X^{*}, X^{**} be topological spaces and let $f : X \to X^*$, and $g : X^* \to X^{**}$ (5) Be continuous. Show that the composition map **gof** : $X \to X^{**}$

http://www.bputonline.com

(5)

		T = { ϕ , {x},{x,y}, {x,z}, X} Find the derived sets of A = {y, z} and B={z,x.}	
Q5	a)	Let (X, T) and (Y, V) be two topological spaces. A mapping $f : X \to Y$ is continuous iff for every V-closed set F, $f^{-1}[F]$ is T-closed.	(5)
	b)	Let (X, \mathbf{T}) and (Y, \mathbf{V}) be two topological spaces. A mapping X to Y is $\mathbf{T} \cdot \mathbf{V}$ closed iff $\mathbf{f}[\mathbf{A}] \subset \mathbf{f}[\mathbf{A}]$ for every $A \subset X$.	(5)
Q6	a)	Show that homeomorphism is an equivalence relation in collection of all topological space.	(5)
	b)	A topological space(X,T) is connected iff it has no non-empty proper subsets which are both T-open and T-closed.	(5)
Q7	a)	If C is connected set and $C \subset E \subset \overline{C}$ then E is connected set.	(5)
	b)	If E is a subset of a subspace (Y, T_y) of a topological space (X, T) then E is T_y - connected set iff E is T-connected.	(5)
Q8	a)	Let (Y, T_y) be a subspace of a topological space (X, T) and let $A \subset Y$ then A is T-compact iff A is $T_y - compact$.	(5)
	г. х		

b) Consider the topological space (X,T) where $X = \{x, y, z\}$ and

b) Continuous image of compact sets are compact. (5)