Registration No :

Total Number of Pages: 02

M.Sc.I FMCE606

6th Semester Regular Examination 2017-18 FUZZY & ROUGH SET THEORY BRANCH: M.Sc.I(MC)

Time: 3 Hours
Max Marks: 70
Q.CODE: C524

Answer Question No.1 which are compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.

Q1. Answer the following questions:

 (2×10)

- a) Explain the basic difference between Fuzzy Set and Crisp set theory.
- **b)** Fuzzy set $A = \{(1, 0.5), (2,0.6)\}$ and $B = \{(1,0.75), (2,0.26)\}$ then find $A \cap B$.
- c) Define Extension Principle in fuzzy set.
- d) What is the generalized distance in fuzzy set?
- e) If $A = \{(2, 0.15), (3, 0.6), (1,0.25), (4,0.16)\}$ then find the degree of A's non-member.
- f) Explain TRFN with example.
- g) What are Fuzzy Inference?
- **h)** Show that $Z(P \rightarrow Q) = Z(P^C \cup Q)$.
- i) What is Hamming distance?
- **j)** If A is in X then B is in Y. Write in form of relation if $A \subset X$ and $B \subset Y$.
- **Q2.** a) Derive a relation between T-norm and T-co-norm.

(5)

(5)

b) What is composition in fuzzy set? Find a composition mapping between two fuzzy sets X and Z where $X \to Y$ and $Y \to Z$ given below:

Х	Y ₁	Y ₂
X ₁	0.2	0.23
X_2	0.35	0.45
Χ ₃	0.44	0.425

Υ	Z_1	Z_2	Z_3
Y ₁	0.65	0.45	0.23
Y ₂	0.214	0.213	0.22

Q3. a)
$$A' = \{(-1,1),(0,0.4),(1,0.02),(2,0.5)\}, B' = \{(-1,0.5),(0,0.08),(1,1),(2,0.5)\}$$
 (5)

and $f(x_1, x_2) = x_1^2 + x_2^2$. Then find $\mu_{B'}(0)$ and $\mu_{B'}(1)$.

b) Let A' is define as smallest integers and B' define as integers close to 4 with the following data then find $\mu_{A'}(3)$ where

 $\mu_{A}(3) = \{(u_1, \mu_{u_1}(3)), (u_2, \mu_{u_2}(3)), (u_3, \mu_{u_3}(3))\}$ and u_i and v_j given in the table below:

u_{i}	μ_{u_i}	v_{j}	μ_{v_j}
8.0	8.0	1	1
0.7	0.5	8.0	0.5
0.6	0.4	0.7	0.3

 $\overline{A} = \{0.2/x_1 + 0.5/x_2 + 1/x_3\} \text{ and } \overline{B} \text{ given by } \overline{B} = \{0.3/y_1 + 0.9/y_2\}.$

b) Define different types of projections in fuzzy relations. (5)

(5)

Q5. a) Verify whether the relations given by matrix is equivalence or not

X/X	X ₁	X ₂	X ₃	X ₄	X 5
X ₁	1	0.8	0	0.1	0.5
X ₂	0.8	1	0.4	0	0.7
X ₃	0	0.4	1	0	0
X ₄	0.1	0	0	1	0.5
X ₅	0.2	0.9	0	0.5	1

b) If
$$\overline{A} = \text{Capacity of ponds and } \overline{B} = \text{Rain fall around given by } \overline{A} = \left\{0.2 / p_1 + 0.6 / p_2 + 0.5 / p_3 + 0.9 / p_4\right\} \text{ and } \overline{B} = \left\{0.4 / g_1 + 0.7 / g_2 + 0.8 / g_3\right\} \text{ then find a relation between } \overline{A} \text{ and } \overline{B}$$
.

Q6. a) Explain α -cut in fuzzy relation and show that R_{α} is always crisp. (5)

b) Draw the graph for the fuzzy relation given by the following matrix (5)

R	а	b	С	d
а	1	8.0	0.7	1
b	8.0	1	0.7	0.8
С	0.7	0.7	1	0.7
d	1	8.0	0.7	1

Q7. a) Write down the properties of membership function. (5)

b) Explain basic de fuzzification techniques . (5)

Q8. Short Notes (Any TWO)

(5 x 2)

- a) Weighted average method
- b) TFN
- c) Fuzzy integrations
- d) Mamdani Algorithm