Registration No :

Total Number of Pages : 02
M.Sc.I

FMCE606

$6^{\text {th }}$ Semester Regular Examination 2017-18 FUZZY \& ROUGH SET THEORY BRANCH : M.Sc.I(MC)
 Time: 3 Hours
 Max Marks: 70
 Q.CODE : C524

Answer Question No. 1 which are compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.
Q1. Answer the following questions :
(2×10)
a) Explain the basic difference between Fuzzy Set and Crisp set theory.
b) Fuzzy set $A=\{(1,0.5),(2,0.6)\}$ and $B=\{(1,0.75),(2,0.26)\}$ then find $A \cap B$.
c) Define Extension Principle in fuzzy set.
d) What is the generalized distance in fuzzy set?
e) If $A=\{(2,0.15),(3,0.6),(1,0.25),(4,0.16)\}$ then find the degree of A 's non-member.
f) Explain TRFN with example.
g) What are Fuzzy Inference?
h) Show that $Z(P \rightarrow Q)=Z\left(P^{C} \cup Q\right)$.
i) What is Hamming distance?
j) If A is in X then B is in Y . Write in form of relation if $A \subset X$ and $B \subset Y$.

Q2. a) Derive a relation between T-norm and T-co-norm.
b) What is composition in fuzzy set? Find a composition mapping between two fuzzy sets X and Z where $X \rightarrow Y$ and $Y \rightarrow Z$ given below:

X	Y_{1}	Y_{2}
X_{1}	0.2	0.23
X_{2}	0.35	0.45
X_{3}	0.44	0.425

Y	Z_{1}	Z_{2}	Z_{3}
Y_{1}	0.65	0.45	0.23
Y_{2}	0.214	0.213	0.22

Q3. a) $A^{\prime}=\{(-1,1),(0,0.4),(1,0.02),(2,0.5)\}, B^{\prime}=\{(-1,0.5),(0,0.08),(1,1),(2,0.5)\}$
and $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$. Then find $\mu_{B^{\prime}}(0)$ and $\mu_{B^{\prime}}(1)$.
b) Let A^{\prime} is define as smallest integers and B^{\prime} define as integers close to 4
with the following data then find $\mu_{A}(3)$ where
$\mu_{A}(3)=\left\{\left(u_{1}, \mu_{u_{1}}(3)\right),\left(u_{2}, \mu_{u_{2}}(3)\right),\left(u_{3}, \mu_{u_{3}}(3)\right)\right\}$ and u_{i} and v_{j} given in the table below :

u_{i}	$\mu_{u_{i}}$	v_{j}	$\mu_{v_{j}}$
0.8	0.8	1	1
0.7	0.5	0.8	0.5
0.6	0.4	0.7	0.3

Q4. a) Explain fuzzy relations find fuzzy relations for
$\bar{A}=\left\{0.2 / x_{1}+0.5 / x_{2}+1 / x_{3}\right\}$ and \bar{B} given by $\bar{B}=\left\{0.3 / y_{1}+0.9 / y_{2}\right\}$.
b) Define different types of projections in fuzzy relations.

Q5. a) Verify whether the relations given by matrix is equivalence or not

X / X	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
x_{1}	1	0.8	0	0.1	0.5
x_{2}	0.8	1	0.4	0	0.7
x_{3}	0	0.4	1	0	0
x_{4}	0.1	0	0	1	0.5
x_{5}	0.2	0.9	0	0.5	1

b) If $\bar{A} \equiv$ Capacity of ponds and $\bar{B} \equiv$ Rain fall around given by
$\bar{A}=\left\{0.2 / p_{1}+0.6 / p_{2}+0.5 / p_{3}+0.9 / p_{4}\right\}$ and
$\bar{B}=\left\{0.4 / g_{1}+0.7 / g_{2}+0.8 / g_{3}\right\}$ then find a relation between \bar{A} and \bar{B}.
Q6. a) Explain α-cut in fuzzy relation and show that $\mathrm{R} \alpha$ is always crisp.
b) Draw the graph for the fuzzy relation given by the following matrix

R	a	b	c	d
a	1	0.8	0.7	1
b	0.8	1	0.7	0.8
c	0.7	0.7	1	0.7
d	1	0.8	0.7	1

Q7. a) Write down the properties of membership function.
b) Explain basic de fuzzification techniques

Q8. \quad Short Notes (Any TWO)
a) Weighted average method
b) TFN
c) Fuzzy integrations
d) Mamdani Algorithm

