Registration No :												
Total Number of Pages : 01 M.Sc.I												
FPYC603 6 th Semester Regular / Back Examination 2018-19 SOLID STATE PHYSICS BRANCH : M.Sc.I(AP) Time : 3 Hours Max Marks : 70 Q.CODE : F288 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.												
Q1	a) b)	Answer the following questions : What are Miller indices? What are symmetry operations? Name the different types of symmetry								(2 x 10)		
	c) d) e) f) g) h) i)	elements. Why X-rays are used for the analysis of crystal structure? What are Brillouin zones? What are covalent crystals? Give an example. What is cohesive energy in solids? What is cohesive energy in solids? What do you mean by density of states? What is a phonon? How the specific heat varies with temperature of a superconductor? Distinguish between perfect conductor and superconductor.										
Q2	a)	Obtain Laue's equations for X-ray diffraction by crystals. Show that these are consistent with the Bragg's law.							re (6)			
	b)	X-rays of wavelength 0.71 A are reflected from the $(1 \ 1 \ 0)$ -plane of a rock salt crystal of lattice constant a = 2.82 Å. Calculate the corresponding glancing angle for second order reflection.									alt (4) ng	
Q3	a) b)	Explain Drude-Lorentz theory of electrical conduction. Explain Fermi-Dirac distribution of electron gas.								(5) (5)		
Q4	a)	How do you explain cohesion in inert gas crystals? Using semi quantitat arguments obtain dependence of the van der Waals' interaction.						antitativ	ve (5)			
	b)	Discuss about the hydrogen bonded crystals. Is hydrogen bond direction or no directional?									n- (5)	
Q5	a) b)	Discuss the experimental survey of superconductivity in detail. Distinguish between Type-I and Type-II superconductors.									(5) (5)	
Q6		Derive an expression for binding energy for an ionic crystal and obtain the expression for the Madelung constant. Evaluate the Madelung constant for linear ionic crystal.									ne (10) or	
Q7		Derive vibrational modes of a diatomic linear lattice. Discuss the different (10) branches of the dispersion relation curve.										nt (10)
Q8	a) b) c)	Write short ans Geometrical Stru Dynamics of mor Meissner's Effec	wer on any acture Facto noatomic ch t	TWO : or nains								(5 x 2)