| Registration No : | | | | | | |-------------------|--|--|--|--|-----| | | | | | | I . | **Total Number of Pages: 01** M.Sc.I FPYC604 ## 6th Semester Regular / Back Examination 2018-19 FUNDAMENTALS OF NUCLEAR & PARTICLE PHYSICS BRANCH: M.Sc.I(AP) Time: 3 Hours Max Marks: 70 | | | Max Marks : 70
Q.CODE : F406
Answer Question No.1 which is compulsory and any FIVE from the rest | | |----|-------------------|--|------------| | | • | The figures in the right hand margin indicate marks. | 1 | | Q1 | a) b) c) d) e) f) | Answer the following questions: A nucleus with A=235, is split in to two nuclei with mass ration 2:1. Find the size of the nucleus at the time of split. Describe what do you mean by isotope, isobar, isotone and isomer. What is packing fraction of nuclei. Plot a graph between packing fraction vs mass number. Write the properties of α , β , γ rays. Derive equation for Q-value of a nuclear reaction. Derive the Coulomb barrier of a nuclear reaction. Determine the spin and parity of $_9F^{17}$ Describe Charmed mesons. | (2 x 10) | | | i)
j) | What do you mean by isospin? Write isospin quantum numbers of quarks.
Write i. Yukawa and ii. Woods-Saxon Potentials and its uses in nuclear physics. | | | Q2 | a) | Derive the Coulomb and Asymmetry Energy terms of Semi empirical mass formula. | (5) | | | b) | Develop equation for Nuclear electric quadrupole moment. | (5) | | Q3 | a)
b) | Analyze different Conservation laws in Nuclear reactions. Formulate the condition of stability against spontaneous fission. | (5)
(5) | | Q4 | a)
b) | Develop radioactive decay law derive by Rutherford and Soddy. Describe Nuclear chain reaction. | (5)
(5) | | Q5 | a)
b) | Describe Gell-Mann-Nishijima Scheme. Give the particle classifications of Bosons. | (5)
(5) | | Q6 | | Derive equation for low energy nuclear reaction cross section by partial wave analysis. | (10) | | Q7 | | Give the significant of magic number. Discuss Nuclear shell models and it's predictions. | (10) | | Q8 | a)
b)
c) | Write short answer on any TWO :
Nuclear Collective model
Nuclear reactor
Quark Colour | (5 x 2) |