(5)

Registration No :		tration No :	
Γotal Number of Pages : 02 M.Sc.I			
2 nd Semester Back Examination 2017-18 MATHEMATICS-II			
BRANCH : M.Sc.I(AP)			
Time: 3 Hours			
Max Marks : 70			
Q.CODE : C811			
Answer Question No.1 which is compulsory and any five from the rest.			
The figures in the right hand margin indicate marks. Answer all parts of a question at a place.			
Answer an parts of a question at a place.			
Q1		Answer the following questions :	(2 x 10)
	a)	Define greatest upper bound and least upper bound of a set.	
	b)	If M and N are neighbourhoods of a point x , then show that $M \cap N$ is also a neighbourhood of 'x'.	
	c)	If S and T are two subsets of real numbers, then show that $S \subseteq T \Rightarrow S' \subseteq T'$	
		Where S' and T' are derived sets of S and T respectively.	
	d)	Find the limit inferior and superior of the sequence $\left\{\frac{(-1)^n}{n^2}, n \in N\right\}$.	
	e)	What is the necessary and sufficient condition for the convergence of a positive term series?	
	f) g)	Define group and give an example of a group. Show that N is a normal subgroup of G iff gNg ⁻¹ =N	
	h)	Define homomorphism from a group ${\cal G}$ to another group ${\bar G}$. What is kernel of Homomorphism.	
	i) j)	Define ring. Give an example of a commutative ring. If R is a ring, then for all $a,b\in R$, $a0=0a$. Prove?	
Q2	a) b)	Show that every open interval (a,b) contains a rational number. Show that the interior of a set 'S' is the largest open subset of 'S'.	(5) (5)
Q3	a) b)	Show that a set is closed iff its complement is open. Prove that the derived set S' of a bounded infinite set $S(\subseteq R)$ has the smallest or greatest member.	(5) (5)
Q4	a)	Show that every bounded sequence has a limit point.	(5)
	b)	Show that the series $\sum \frac{1}{n}$ doesn't converge.	(5)

Q5 a) Explain Cauchy's root test for convergence of an infinite series.

- **b)** Show that the series $\sum \frac{1}{n!}$ is convergent. (5)
- **Q6** a) If H is a non empty subset of a group G and H is closed under multiplication, then show that H is a subgroup of G. (5)
 - **b)** Let H and K be finite subgroups of a group G, then show that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)} \, .$
- Q7 a) Show that the subgroup N of a group G is normal iff every left coset of in G is a right coset of N in G. (5)
 - **b)** If ϕ is a homomorphism of G into \bar{G} , then show that (i) $\phi(e) = \bar{e}$ and (ii) $\phi(x^{-1}) = \phi(x)^{-1}$.
- Q8 a) Show that, the set of even integers under the usual operations of addition and multiplication is a commutative ring. (5)
 - b) Prove that a finite integral domain is a field. (5)