| Registration No : | | | | | | | | | | | | | | | | |-------------------|--|--|--------------------|-------------------|----------|---|-----------------------|-------------------------------------|---|-------------|-------|--------|------------|------------|------------| | Tota | al N | umber of Pag | jes : (| 01 | | | | | | | | | I | | M.Sc.I | | | | Answer Que
Th | | | B
whi | MAT
RAN
Tin
Ma
Q.0
ch is | HEM CH: ne: x Ma CODE | M.Sc
M.Sc
Hou
rks:
E:F{ | S-II
:.I(AC
irs
70
508
ory a | c)
and a | ıny F | IVE 1 | | | :MCE207 | | Q1 | a)
b)
c)
d)
e)
f)
g)
h)
i) | Answer the following questions: What is the density of rational and irrational numbers in R. How to find limit points of a sequence? What is Quotient Groups? Write difference between Countable and uncountablesets Show that Every convergent sequence is bounded? Define Limit point of a set? Write difference between limit interior and limitsuperior? What is cosets? Define closure of a set? What are the Algebraic structures? | | | | | | | | | | | | (2 x 10) | | | Q2 | | Define&prove Archimedian property of R . Prove that there is no largest and no smallestreal number. | | | | | | | | | | | | | (5)
(5) | | Q3 | - | State and prove Bolzano- Weierstrass Theorem for sets. Prove that N is a Normal subgroup of G iff gNg⁻¹ € N for every g € G and n €N | | | | | | | | | | | | | (5)
(5) | | Q4 | a)
b) | Find all normal subgroups in S_4 .
Prove, If Φ is a Homomorphism of G into G' with kernel K then K is a normal subgroup | | | | | | | | | | | | (5)
(5) | | | Q5 | a)
b) | Every countable set is countable. Test the convergence of the series $\frac{n(n+3)}{(n+1)2}$ | | | | | | | | | | | (5)
(5) | | | | Q6 | | Prove that a 2 | X 2 s | ymme | etric n | natrix | form | a gro | up fin | d its i | denti | ty and | l inverse | ∍. | (10) | | Q7 | | Prove that the | set o | f alge | braic | numb | ers is | cour | ıtable | infini | te. | | | | (10) | | Q8 | a)
b)
c) | Write short a
Cauchy's gend
A Counting Pr
Difference bet | eral pi
inciple | rincipl
e with | e ofco | onver
ble ex | campl | es. | omorp | hism | s, | | | | (5 x 2) |