Registration No :										
-------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages : 01

M.Sc.I FPYE1004

10th Semester Regular Examination 2018-19 CONDENSED MATTER PHYSICS-II

BRANCH: M.Sc.I(AP)
Time: 3 Hours
Max Marks: 70
Q.CODE: F071

Answer Question No.1 which is compulsory and any FIVE from the rest.

The figures in the right hand margin indicate marks.

Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: Draw spins directions for ferro-, ferri-, and anti-ferromagnetic substances. Beyond Neel temperature, write the expression for magnetic susceptibility. What is meant by exchange integral? State Curie-Weiss Law. Define an Exciton. What is meant by magnon? Draw the labeled diagram for phonon absorption by an electron. What is a Ferroelectric crystal? Draw a labeled diagram for a Cooper pair. What is meant by F centre?	(2 × 10
Q2	a) b)	Explain Polarization catastrophe for Ferroelectric crystals. Derive Bloch's T ^{3/2} Law.	(5) (5)
Q3		Apply spin-wave theory to ferromagnetic substances and derive the dispersion relation.	(10)
Q4	a) b)	Distinguish between Frenkel and Schottky defects Use statistical mechanics to derive an expression for n in terms of N, E_{v} and T where the symbols have their usual meanings.	(3) (7)
Q5	a) b)	Explain electron-phonon interaction. Derive the $2^{\rm nd}$ quantized form of Hamiltonian for electrons and phonons interaction.	(3) (7)
Q6	a) b)	Describe the experimental set up for Josephson effect. Give the theory behind D.C. Josephson effect	(3) (7)
Q7	a) b)	Derive the 0D, 1D and 2D nanostructures. What is the mechanism of colorations of a solid?	(6) (4)
Q8	a) b) c)	Write Notes on any TWO: Landau diamagnetism Second order phase transition. SQUID Electron-electron attractive interaction due to virtual phonon exchange	(5×2)