www.bputonline.com			
Registration no:			

Total Number of Pages: 02 bput question papers visit http://www.bputonline.com

MSC.I FCYC603

6th Semester Regular Examination 2016-17 QUANTUM THEORY BRANCH(S): Applied Chemistry

Time: 3 Hour Max marks: 70 Q Code:Z259

Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

- a) Write the conditions for the two different wave functions Ψ_A and Ψ_B to be orthogonal and normalized.
- b) How is the energy calculated from wave function using Hamiltonian operator?
- c) Outline salient features of time independent non –degenerate perturbation theory. Give example of a perturbed and an unperturbed system.
- d) What is zero point energy for simple harmonic oscillator? How is it in accordance with Heisenberg's uncertainty principle?
- e) Write down the expression for energy of a particle in a three dimensional box of dimensions a ,b and c. Show that when the box becomes cubical the ground state energy becomes equal to three times the particle in one dimensional box.
- f) What do you mean by linear operator? On which condition two operators A and B commute?
- g) Write two postulates of quantum mechanics.
- h) Draw molecular orbital energy level diagram of HF molecule.
- i) What is meant by Born Openheimer Approximation?
- j) What do you mean by a rigid rotator? Write the Schrodinger wave equation of such rotator.

bput question papers visit http://www.bputonline.com

- Q2 a) Setup a wave equation for a particle of mass 'm' moving inside in a onedimensional box, where the potential energy inside the box is zero and infinite outside and prove that wave functions corresponding to two different eigen states are orthogonal.
 - b) Show that eigen values of Hermitian operator whether real or complex (2)

-		is always real.	bput question papers visit http://www.bputonline.com	
Q3		•	tion for motion of an electron in a Hydrogen like inates. Separate the equation into three functions the Z (φ)function.	(1+5+4)
Q4	a)	On the basis of variation	n theorem show that <Ψ H Ψ > ≥ E ₀	(6)
	b)	Derive an expression fo	r the ground state wave function of Helium atom.	(4)
Q5		• • •	ticle exhibiting simple harmonic oscillation set up tion and derive an expression E_n =(n+1/2)hu for E_n .	(4+6)
Q6		MO wave function. Drav	lue for hydrogen molecule ion by using LCAO— w potential energy curve. How does the with the observed value?	(8+1+1)
Q7		Discuss Heitler- Londor	n treatment of Hydrogen molecule by VB method.	(10)
	a)		electronic wave function for N ₂ and NO molecule	
	b)	Calculate the bond orde	ar orbital energy level diagram. For of the following species and arrange them in strength. $O_2^{2-}, O_2, O_2^+, O_2$	(3)
	c)	On the basis of MO the	ory show that Helium is mono atomic.	(1)

bput question papers visit http://www.bputonline.com