Registration no: \square

$4^{\text {th }}$ Semester Regular Examination- 2016-17
 Math-IV
 BRANCH(S): M.Sc.I(AP)
 Time: 3 Hour
 Max marks: 70
 Q Code: Z911

Answer Question No. 1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks

Q1 Answer the following questions:
a) Define error propagation and discuss the different types of error associated with numerical methods.
b) Define rate of convergence of an iterative process.
c) What is a diagonally dominant matrix?
d) What is the disadvantage of Lagrange's Interpolation?
e) Write the error in Simpson's $1 / 3^{\text {rd }}$ method of numerical integration.
f) What do you mean by Partial Pivoting?
g) Write the iterative formula of Euler's Method for solving the initial value problem $y^{t}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$.
h) What are the advantages of Runge-Kutta Methods?
i) Explain Crout-Decomposition.
j) Explain Method of Least Squares.

Q2 a) Find the positive root of $e^{x}-3 x-\sin x=0$ using Newton -Raphson method.
b) Find the root of $f(x)=x^{3}+x^{2}-3 x-5=0$ using regula-falsi method
bput question papers visit http://www.bputonline.com
Q3 a) Find the interpolating polynomial of the following data using Newton
Divide Difference method

x	3	5	6	9	11
$f(x)$	5	7	9	12	17

Also find f(7).
b) Find the Inverse of the following matrix using LU decomposition
method. $\quad\left[\begin{array}{ccc}1 & 2 & 6 \\ 2 & 5 & 15 \\ 6 & 15 & 46\end{array}\right]$

Q4 a) Solve the following system of equations using Gauss -Seidel method, bput question papers visit http://www.bputonline.com

$$
\begin{aligned}
& 2 x+y+z=7 \\
& x+3 y+z=10 \\
& x+y+4 z=15
\end{aligned}
$$

b) Using Simpson's $1 / 3$ rule, evaluate $\int_{1}^{5} x e^{x} d x$ taking $\mathrm{h}=0.5$

Q5
a) Using Gauss - quadrature Two point Formula, evaluate $\int_{-1}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
b) Apply Runge-Kutta $4^{\text {th }}$ order method to solve $y^{\prime}=\frac{1}{x+y}, y(0.1)=1$ at $x=0.2$ with $h=0.1$

Q6
Given $\frac{d y}{d x}+\frac{y}{x}=\frac{y}{x^{n}}, y(1)=1$,Evaluate $y(1.3)$ by Euler's Modified Method.

Q7
a) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by dividing the range into 4 equal parts using Trapezodal rule.
b) Solve $\frac{d y}{d x}=1-y, y(0)=0$ using Euler's Method. Find y ay $x=0.1$ and $x=0.2$. Compare the result with the exact solution.

Q8 a) Using Lagrange's interpolation formula to fit a polynomial to the data

x	0	1	3	4
y	-12	0	6	12

Find the value of y when $\mathrm{x}=2$.
b) Solve the following equations using relaxation method
$5 x-y-z=3$
$-x+10 y-2 z=7$
$-x-y+10 z=8 \quad$ bput question papers visit http://www.bputonline.com

