Registration no:					

Total Number of Pages: 2

bput question papers visit http://www.bputonline.com

<u>MSc,l</u> MCE407

4th Semester Regular Examination- 2016-17 Math-IV

BRANCH(S): M.Sc.I(AP)

Time: 3 Hour Max marks: 70 Q Code: Z911

Answer Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks

Q1 Answer the following questions:

(2 x 10)

- a) Define error propagation and discuss the different types of error associated with numerical methods.
- **b)** Define rate of convergence of an iterative process.
- c) What is a diagonally dominant matrix?
- d) What is the disadvantage of Lagrange's Interpolation?
- e) Write the error in Simpson's 1/3rd method of numerical integration.
- f) What do you mean by Partial Pivoting?
- **g)** Write the iterative formula of Euler's Method for solving the initial value problem y' = f(x, y) with $y(x_0) = y_0$.
- **h)** What are the advantages of Runge-Kutta Methods?
- i) Explain Crout-Decomposition.
- j) Explain Method of Least Squares.
- **Q2 a)** Find the positive root of $e^x 3x \sin x = 0$ using Newton –Raphson [5] method.
 - **b)** Find the root of $f(x) = x^3 + x^2 3x 5 = 0$ using regula-falsi method [5]

bput question papers visit http://www.bputonline.com

Q3 a) Find the interpolating polynomial of the following data using Newton [5]
Divide Difference method

Х	3	5	6	9	11
f(x)	5	7	9	12	17

Also find f(7).

- b) Find the Inverse of the following matrix using LU decomposition [5] method.
- Solve the following system of equations using Gauss -Seidel method, [5] bput question papers visit http://www.bputonline.com

$$2x + y + z = 7$$

 $x + 3y + z = 10$
 $x + y + 4z = 15$

- b) Using Simpson's 1/3 rule, evaluate $\int_{0}^{5} xe^{x} dx$ taking h= 0.5 [5]
- Q5 [5] Using Gauss – quadrature Two point Formula, evaluate $\int_{-\sqrt{1-x^2}}^{1} dx$
 - Apply Runge-Kutta 4th order method to solve $y' = \frac{1}{x+y}$, y(0.1) = 1 at [5] x = 0.2 with h = 0.1
- Given $\frac{dy}{dx} + \frac{y}{x} = \frac{y}{x^2}$, y(1) = 1, Evaluate y(1.3) by Euler's Modified Q6 [10] Method.
- a) Evaluate $\int_0^1 e^{-x^2} dx$ by dividing the range into 4 equal parts using Q7 [5] Trapezodal rule.
 - b) Solve $\frac{dy}{dx} = 1 y$, y(0) = 0 using Euler's Method. Find y ay x=0.1 and [5] x=0.2. Compare the result with the exact solution.
- Q8 Using Lagrange's interpolation formula to fit a polynomial to the data [5]

Х	0	1	3	4
У	-12	0	6	12

Find the value of y when x=2.

- **b)** Solve the following equations using relaxation method [5] 5x-y-z=3-x+10y-2z=7
 - -x-y+10z=8bput question papers visit http://www.bputonline.com