Registration No :					

Total Number of Pages: 02

M.Sc. 16MPYE404

4th Semester Regular Examination 2017-18 CONDENSED MATTER PHYSICS-II

BRANCH: M.Sc.(AP)
Time: 3 Hours
Max Marks: 70
Q.CODE: C303

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1. Answer the following questions:

 (2×10)

- a) Write two examples of multiferroic compound.
- **b)** Graphically show the variation of magnetic susceptibility with temperature for ferromagnetic materials.
- c) How many numbers of slip systems exist in a bcc crystal?
- d) What is the spin of the Ferric ion?
- e) Write two examples of superconducting materials.
- f) What is Neel temperature?
- g) If the number of magnetic dipoles (spins) in a ferromagnetic material is 3 x 10 ²⁸ /m³ and the spin magnetic moment is 3 x 10 ⁻²³ Am² then determine the saturation magnetization.
- h) Write down the approximate energy of a screw dislocation.
- i) Can color of the crystal be affected due to defects? Give an example.
- j) Write two applications of superconductivity.
- Q2. a) Describe the Weiss molecular field theory of ferromagnetism and derive the Curie-Weiss law. (7)
 - **b)** Explain what you mean by ferromagnetic domains.

(3)

- Q3. a) What are magnons and establish their dispersion relation in terms of Bloch's Law. (7)
 - **b)** Write the draw backs of Mean field theory in ferromagnetic domain.

(3)

(3)

- Q4. a) What are Schottky defects? Establish the expression for concentration of Schottky defect at temperature T. (2+5)
 - b) The density of Schottky defects in a certain sample of sodium chloride is **5 x 10** ¹¹ m⁻³ at **300 K**. If the inter ionic separation is **2.82 A**⁰, what is the average energy required to create one Schottky defect.
- Q5. a) Establish the solution of BCS Hamiltonian in terms of spin analog method. (7)
 - b) Calculate the frequency of AC current produced when a DC voltage of 5 μ V is applied across the Josephson junction. (3)

(7) Q6. a) What do you mean by nano structured materials? Classify on the basis of dimensional confinement. **b)** What is the main difference between 1st order and 2nd order phase transition? (3) What do you mean by excitons? Write the properties of excitons and classify (10)Q7. them. Find out the energy eigen value of exciton wave. (5 x 2) Q8. Write short answer on any TWO: SQUID a) b) F- center c) Quantum dots

d) Magnons