|            |         | •       |
|------------|---------|---------|
| XX/XX/XX/  | hnut∩nl | ine.com |
| ** ** ** . | obutom  | mc.com  |

Registration no:

|  |  |  |  | 1 |
|--|--|--|--|---|
|  |  |  |  | ı |
|  |  |  |  | 1 |
|  |  |  |  | ı |
|  |  |  |  | ı |
|  |  |  |  | ı |

Total Number of Pages: 02

<u>M.Sc</u> MCYC203

## 2<sup>nd</sup> Semester Regular Examination 2016-17 PHYSICAL CHEMISTRY-II BRANCH(S): M.Sc.(AC)

Time: 3 Hour Max marks: 70 Q Code:Z946

Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks.

## Q1 Answer the following questions:

(2 x 10)

- a) What are complex reactions? Name the different disturbing factors in complex reactions
- **b)** What are fast reactions? Give their general features.
- c) Explain what is micellization?
- d) What is meant by quantum yield?
- e) What are the assumptions of collision theory?
- f) Mention the difference between fluorescence and phosphorescence.
- g) Explain the terms internal conversion and intersystem crossing?
- **h)** Write the Einstein relation with reference to transport phenomena and define each term involved therein?
- i) What are bimolecular photophysical processes?
- j) What is meant by surface active agents? Give two examples.
- Q2 a) Deduce the rate expression for the reaction between two ions in solution based on double sphere model. (6)
  - b) Lindemann mechanism for a unimolecular reaction is given below: (4)

$$A + A \leftrightarrow A^* + A$$

$$k_{-1}$$

$$A^* \stackrel{k_2}{\to} P$$
. Show that:  $\frac{d[P]}{dt} = \frac{k_2 k_1 [A]^2}{k_{-1} [A] + k_2}$ 

- Q3 a) What is chain reaction? Explain various steps of a chain reaction specifying an example. (3)
  - b) For a primary salt effect show that:  $\log k = \log k_0 + 1.018Z_AZ_B\sqrt{I}$  where the terms have their usual meaning. (4)
  - c) Discuss the principle of the stopped flow method giving the block diagram of the stopped flow apparatus. (3)

| Q4 |                      | Derive Fick's laws of diffusion. Establish the relation between diffusion co-efficient and mean free path.                                                         | (7+3)               |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Q5 | a)<br>b)<br>c)       | Explain the formation of surface films on liquids. What is microemulsion? Explain with examples. Give the structure of a micelle. Explain what is meant by reverse | (3)<br>(2)<br>(1+2) |
|    | d)                   | micelles. What is meant by counter ion binding to micelles?                                                                                                        | (2)                 |
| Q6 | a)<br>b)<br>c)<br>d) | Write brief notes on any TWO: Diffusion limited reactions. Laws of photochemical equivalence. Thermodynamics of micellization. Kasha's rule                        | (2X5)               |
| Q7 |                      | Discuss the Kramer's theory of reaction kinetics. How does the Kramer's overall rate of a chemical reaction satisfy two solutions in limiting regimes?             | (8+2)               |
| Q8 | a)                   | Write notes on any TWO. Rice-Herzfeld scheme.                                                                                                                      | (2x5)               |
|    | b)                   | Isotope effect.                                                                                                                                                    |                     |
|    | c)                   | Franck-Condon principle.                                                                                                                                           |                     |
|    | d)                   | Catalytic activity at surfaces.                                                                                                                                    |                     |