Registration No :					

Total Number of Pages : 02

2nd Semester Back Examination 2017-18 NUMERICAL ANALYSIS BRANCH : M.Sc.(MC), M.Sc.(MH) Time : 3 Hours Max Marks : 70 Q.CODE : C711

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.

Q1 Answer the following questions:

a) What is piecewise cubic Hermit Interpolation?

b) Calculate f'(5) using 3-point backward difference formula for following data points :

Х	1	2	3	4	5
У	0.5	2	4.5	8	12.5

c) Estimate f'(1) using Richardson extrapolation for following given data points:

Х	-1	0	1	2	3
у	0.25	0.5	1	2	4

- d) Define explicit and implicit method in ODE. Give one example each.
- e) Write the draw backs of Adams-Bash forth method?
- f) Write the formula used in ABM2 Predictor-Corrector method?
- **g)** Graph the piecewise linear interpolation for the data points(0,0),(1,1),(2,4) and (3,3).
- **h)** Check the function $3u_{xx} + u_{xy} 4u_{yy} + 3u_y = 0$ is parabolic, Hyperbolic or Elliptic?
- i) Define basic functions in connection with the finite element method of elliptic partial differential equations.
- j) State two methods for accelerating the convergence of QR method.
- **Q2** a) Assme f(x), f'(x) and f''(x) are continuous for all x in some neighbourhood of (5) α and assume $f(\alpha) = 0$, $f'(\alpha) \neq 0$.

Then if x_0 is chosen sufficiently close to α , the iterates $x_{n,n \ge 0}$ of $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ will converge to α .

- **b)** Find the root of x^4 -x-10=0 by using Muller's method. (5)
- Q3 a) Find the cubic Hermite polynomial that satisfies (5) p(1)=2,p'(1)=1,p(3)=1,p'(3)=2
 - **b)** Find the value of f'(3) from the data points (91,20),(2,4),(3,8),(4,16) and (5) (5,32) taking h=2 and using Richardson extrapolation. (5)
- **Q4** Solve the following differential equation by using 3^{rd} order Adams-Bash (10) forth Method: $y' = 1 + y^2$, y(1) = 1, find y(1.6)?

M.Sc. MMCC202

(2 x 10)

Q5 a) Find the dominant eigen value of following matrix using power method (5) $\begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

- $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 5 & 6 \end{bmatrix}$
- **b)** Using Q-R factorization ,solve the matrix $\begin{bmatrix} 45 & -44 & 22 \\ -44 & 44 & -22 \\ 22 & -22 & 10 \end{bmatrix}$ (5)
- **Q6 a)** Find the eigen value of matrix $A = \begin{bmatrix} 20 & 9 & 1 \\ 8 & 8 & 6 \\ 4 & 5 & 6 \end{bmatrix}$ which is closest to b=10 (5)
 - b) Obtain the cubic spline approximation for the function defined by the data: (5)

Х	0	1	2	3
f(x)	1	2	33	244

With M(0)=0, M(3)=0

- **Q7** a) Solve the following PDE using Bender-Schimidst recurrence relation: (5) $2\frac{\partial u}{\partial t} = \frac{\partial^2(u)}{\partial x^2}$ using u(x,0)= 4x-x² u(0,t)=0,u(4,t)=0,h=1,0 \le x \le 4 and for t>0
 - **b)** Approximate the following using Romberg Integration $\int_0^1 x \sin(\pi x) dx$ (5)
- **Q8** Solv the following parabolic PDE by using Crank-Nicolson formula $\frac{\partial u}{\partial t} = \frac{\partial^2(u)}{\partial x^2}$ (10) ,with initial condition as $u(x,0)=x^2$, for $0 \le x \le 4$ and boundary condition as u(0,t)=u(4,t)=0 for $0 \le x \le 4$, $0 \le t \le 4$, taking $\alpha = 1$