Registration No :		ration No :												
Total Number of Pages: 02 2nd Semester Back Examination 2017-18 COMPLEX ANALYSIS BRANCH: M.Sc.(MC), M.SC.(MH) Time: 3 Hours Max Marks: 70 Q.CODE: C805 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.														
Q1	a) b) c)	Verify Cauchy Riemann equation f(z)=ln z What is bilinear Transformation? Give one example.											(2 x 10)	
	d) e) f) g) h) i)	If $f:c \to c$ be analytic except for a simple pole at z=0 and $g:c \to c$ be analytic, then find the value of $\left\{\frac{Res}{Z=0}\{f(z).g(z)\over Res f(z)\right\}$ What is the principal value of $\log(i^{\frac{1}{4}})$? Define essential singularities and give an example? Define Roucher's Theorem? Give one example. For the function $f(z)=\sin(\frac{1}{cos^{\frac{1}{2}}})$ at the point z=0 is which singularity. If $f(z)=\sum_{n=0}^{15}z^n$ for $z\in c$, if $c: z-i =2$ then find the value of $\oint \frac{f(z)}{(z-i)^{15}}dz$ State Morera's Theorem?												
Q2	a) b)	Prove that an entire bounded function in a complex plane is constant.									nt.	(5) (5)		
Q3	a) b)	State and prove the Cauchy residue Theorem? $\int_c \overline{z} dz$, c from 0 along the parabola y=x ² to 1+i											(5) (5)	
Q4	a) b)	Suppose that f is analytic in bounded domain D and continuous of Then prove that $ f(z) $ attain its maximum at some point or boundary of D. Check the function $u = \frac{x}{x^2 + y^2}$ is harmonic? if yes then find the harmoning conjugate of u.											n the	(5) (5)
Q5	a) b)	Find the Laurent series of $f(z) = \frac{2z-3i}{z^2-3iz-2}$ in the region $1 < z < 2$. Find the residues of $f(z) = \frac{z^2-2z}{(z+1)^2(z^2+4)}$												(5) (5)
Q6	a)	Find the radius	s of co	onver	gence	e of ∑	$n=0$ $\frac{(n-1)^n}{2^n}$	$\frac{(3n)!}{(n!)^3}Z$	r^n .					(5)

- **b)** Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$ (5)
- Q7 a) Let f be meromorphic in a domain $D \subseteq C$ and have only finitely many (5) zeros and pole in D. if C is a simple closed contour in D such that no zeros or poles of f lies on C ,then $\frac{1}{2\pi i} \oint \frac{f'(z)}{f(z)} dz = \text{N-P, where N is no of zeros and P is no of poles of f inside C, each counted according to their order.}$ **b)** Evaluate: $\int \frac{2z^3 - 3}{z(z - 1 + i)^2} dz$, c consists of |z| = 2 counter clockwise and |z| = 1
 - (5) clockwise.
- a) Prove that $|\oint f(z)dz| \le MI$, where $M = \max_{z \in c} |f(z)|$ and I is the length of c. b) Evaluate: $\oint \frac{e^z + z}{z^3 z} dz$, c: $|z| = \frac{\pi}{2}$ using Cauchy Residue theorem Q8 (5) (5)