\square
Registration No:

Total Number of Pages: 02

M.Sc.

15MMCC204

$2^{\text {nd }}$ Semester Back Examination 2017-18

LINEAR ALGEBRA
BRANCH : M.Sc.(MC)
Time : 3 Hours
Max Marks : 70
Q.CODE : C926

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.
Q1 Answer the following questions:
a) If A is invertible what is the inverse of A^{T}.
b) Describe the smallest subspace of the 2×2 matrix space M that contains $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \&\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
c) Define null space of a matrix.
d) What do you mean by Hermitian \& skew-Hermitian matrix? Give an example.
e) Find the algebraic multiplicity of the given matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
f) The determinant of a unitary matrix has absolute value 1.
g) Prove that for a square matrix $A\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.
h) If A is invertible and $A B=A C$, Prove that $B=C$
i) Define positive semidefinite.
j) Define minimax maximin.

Q2 a) Solve the following system of linear equation by back- substitution for

$$
\begin{gathered}
z, y \& x \cdot 4 x+7 y+5 z=20 \\
-2 y+2 z=0
\end{gathered}
$$

b) Find the inverse of the given matrix by using Gauss- Jordan method

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]
$$

Q3 a) Solve the following system of linear equations by Gauss elimination method

$$
\begin{aligned}
& u+v+w=0 \\
& u+2 v+3 w=0 . \\
& 3 u+5 v+7 w=1
\end{aligned}
$$

b) Show that v_{1}, v_{2}, v_{3} are linearly independent but $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly
dependent: $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] v_{4}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$

Q4 State and prove Fundamental theorem of orthogonality.

Q5 a) Find the dimension and a basis for the four fundamental subspaces for
$A=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1\end{array}\right] \& U=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
b) Prove that T^{2} is a linear transformation if T is linear(from R^{3} to R^{3}).

Q6 a) Find the Eigen values and Eigen vectors of the following matrix
$A=\left[\begin{array}{ccc}0 & -i & 0 \\ i & 1 & i \\ 0 & -i & 0\end{array}\right]$. what property do you expect for the eigenvectors, and is it true ?
b) Find a basis of Eigen vectors that form a unitary system $A=\left[\begin{array}{cc}0 & 3 i \\ -3 i & 0\end{array}\right]$.

Q7 a) Find $e^{A t}$ using the given matrix $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right]$.
b) Find out what type of conic section the following Quadratic form represents and transform it to principal axes

$$
Q=17 x_{1}^{2}-30 x_{1} x_{2}+17 x_{2}^{2}=128
$$

Q8 a) Using Gram-Schmidt process find the orthonormal basis for the independent vectors are $a=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], b=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], c=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
b) Find the rank of the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$

