$1^{\text {st }}$ Semester Back Examination 2017-18 INORGANIC CHEMISTRY
 BRANCH(S): M.Sc. (AC)
 Time: 3 Hours
 Max Marks: 70
 Q.CODE : B749

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:
(a) Which p orbital can form $\mathrm{d} \pi-\mathrm{p} \pi$ bond with d_{yz} orbital in a diatomic molecule? Diagrammatically illustrate the overlap of the bond.
(b) Provide two evidences in favour of dissociative mechanism of Acid Hydrolysis of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$.
(c) Differentiate between labile and inert complexes with examples.
(d) Write down the ground CF states of High Spin and Low Spin complexes of d^{5} O_{h} system.
(e) Write down the LGOs (SALCs) of ligand orbital which will match with the symmetries of $\mathrm{d}_{\mathrm{x}} 2-\mathrm{y} 2$ and d_{xy} orbitals of metal in an O_{h} complex.
(f) Determine the structures of ClF_{5} and XeF_{4} from VSEPR theory.
(g) How does the Racah parameter ' B ' vary with the oxidation state of the metal ions?
(h) For $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}(\mathrm{Oh})$, one of the spin allowed transition ${ }^{1} \mathrm{~A}_{19} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}$ is symmetry forbidden. The M-N odd vibrational modes for Oh are $T_{1 u}$ and $T_{2 u}$. Is this transition vibronically allowed? Justify.
(i) How do the following states of a free ion split in an octahedral field?S, F, P and G
(j) Arrange the ligands in increasing order of trans effect: $\mathrm{NH}_{3}, \mathrm{Cl}^{-}, \mathrm{CO}$ and OH^{-}

Q2 Calculate the s and p character of bonding and anti-bonding MOs of $\mathrm{H}_{2} \mathrm{O}$ molecule.

Q3 List the angular scaling factors for d-orbitals for Oh and Td complexes.
Q4 (a) Why might d-d absorption bands for tetrahedral complexes be expected to be more intense than those for octahedral complexes for the same metal ion?
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is expected to give three bands. Assign each band by the help of Orgel diagram.
(c) Construct and explain the Orgel diagrams for a d^{2} - configuration under octahedral and tetrahedral environment.

Q5 Derive the possible terms of d^{2} - configuration.

$$
2-1+2+2+2
$$

Construct the σ and π LGOs to match the symmetry of $p, d_{x 2-y 2}$ and $d_{x y} A O s$ of metal in an Oh complexes. Draw the sketches of these LGOs.
(a) Discuss the mechanism of outer sphere electron transfer reactions.
(b) What do you meant by Marcus cross reaction? Discuss its application.

Q8 Write notes on :
(a) Swain-Scott equation.
(b) Bents rule and its application.

