Registration no:									
------------------	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

M.TECH PEPC201

2nd Sem Back Examination – 2015-16 POWER CONVERTER-II Q.CODE:W759x Time: 3 Hours

Max marks: 70

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1	Answer the following questions:	(2 x 10

- a) What is the difference between linear power supplies and switching power supplies?
- b) What is bidirectional core excitation in DC-DC converter?
- c) How the current and source inverters are different?
- d) In SVM why two consecutive voltage vectors are selected for synthesizing the reference voltage vectors?
- e) What are possible application of multilevel inverters?
- f) What will happen in forward converter if we select tertiary turns equal to primary turns and duty ratio greater than 0.5?
- g) What is the difference between SVPWM and PWM technique?
- h) Draw the circuit diagram of a push-pull converter.
- i) What are the methods for voltage control in series resonant inverter?
- i) What is the dead zone of a resonant inverter?
- Q2 a) What is switch mode rectifier? Describe the operation of a single phase switch mode (5) rectifier. What will happen if the inductor is moved from load side to source side?
 - b) Explain the operation of 3-phase series inverter with diagram and waveforms. What (5) are disadvantages and how they are overcome?
- Q3 a) Describe the operation of 5-level diode clamped multilevel inverter with diagrams and (6) the switching states in a table.
 - b) Compare the number of diodes and capacitors for diode clamp, flying capacitor and (4) cascaded inverters if m=5
- For three phase SVM Based inverter, derive the expressions of durations for which (7+3) the consecutive voltage vectors are to be applied in order to synthesize V_{ref} , in case the reference vector is lying in sector one. What do you mean by pulse of opposite polarity?
- Q5 a) Derive the expression for output voltage of sepic converter by considering a non-ideal (5) inductor that is the inductor has a finite resistance 'r'.
 - b) In a buck-boost converter, consider all components to be ideal. Let V_d be 8-40V, (5) V₀=15V, f_s=20kHz, and C=470μF. calculate L_{min} that will keep the converter operating in a continuous conduction mode if P₀ ≥2W

109

109

109

109

109

109

- Q6 a) Explain the working of two quadrant zvs resonant converter with circuits and (5) waveforms.
 - b) What are the advantages of and limitations of ZCS and ZVS converters? (5)

(5)

- Q7 a) A flyback converter is operating in complete demagnetization mode. Derive the voltage transfer ratio in terms of load resistance R, switching frequency f_s , transformer inductance L_m and duty ratio D.
 - b) In a CÚK converter, operating at 50kHz, L1=L2=1mH and C= $5\mu F$. the output capacitor is sufficiently large to yield an constant output voltage. Here V_d = 10V and output voltage is regulated be constant at 5V. It is supplying 5W to a load. Assume ideal components. Calculate percentage error in i_{L1} , i_{L2} and V_{C1} , if all these are assumed to be constant.

Q8 Answer any two (5 x 2)

- a) Push-pull converter
- b) Current regulated PWM voltage source inverter
- c) Buck converter
- d) Three Phase Series Inverter.

109

109

109

.00