Registration No :						
Total Number of Pages : 02 M.Sc.I						
FMCE903 9 th Semester Regular Examination 2019-20 ALGEBRAIC GRAPH THEORY BRANCH : M.Sc.I(MC) Time : 3 Hours Max Marks : 70 Q.CODE : HR208 Answer Question No.1 which is compulsory and any FIVE from the rest. The figures in the right hand margin indicate marks.						
Q1			x 10)			
	a)	Define the spectrum of a graph and find it for K_4 .				
	b)	What are the values of the rank and co-rank of a graph Γ with 'n' vertices, 'm' edges and 'c' components?				
	c)	What are the components of an elementary graph?				
	d)	If $g(\Gamma)$ denotes the number of edges in a smallest cycle (girth) of a graph Γ , then for n≥3, and a≥2, what are the values of $g(K_n)$ and $g(K_{a,a})$?				
	e)	Define the tree number of a graph $\Gamma.$ What is the tree number of $K_n?$				
	f)	Is the line graph L(Γ) of a regular graph Γ of degree 'k' a regular graph? If yes then what is the degree of L(Γ)?				
	g)	What is the chromatic polynomial of a tree T containing 'n' vertices and what is it'schromatic number?				
	h)	Define the cone and the suspension of a graph Γ .				
	i)	Define the Tutte polynomial.				
	j)	Define Cayley graph.				
Q2		Prove that the coefficients of the characteristic polynomial $\chi(\Gamma; \lambda) = \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \dots + c_n$ of a graph Γ satisfy : (i) $c_1 = 0$. (ii) $-c_2$ is the number of edges of Γ ; and (iii) $-c_3$ is twice the number of triangles in Γ .	(10)			
Q3		If Γ is a regular graph of degree k with n vertices and m edges, then prove that $\chi(L(\Gamma); \lambda) = (\lambda + 2)^{m-n} \chi(\Gamma; \lambda + 2 - k)$.	(10)			
Q4	a)	Prove that any square submatrix of the incidence matrix D of a graph Γ has determinant equal to 0 or +1 or -1.	(5)			
	b)	Find the tree number of the line graph $L(\Gamma)$ of a k-regular graph Γ .	(5)			
Q5		Let $0 \le \mu_1 \le \mu_2 \le \ldots \le \mu_{n-1}$ be the Laplacian spectrum of a graph Γ with n vertices. Then prove that $\kappa(\Gamma) = \frac{\mu_1 \mu_2 \dots \mu_{n-1}}{n}$. Again prove that If Γ is a connected and k-regular graph and its spectrum is Spec $\Gamma = \begin{pmatrix} k & \lambda_1 \dots \dots & \lambda_{s-1} \\ 1 & m_1 \dots \dots & m_{s-1} \end{pmatrix}$, then $\kappa(\Gamma) = n^{-1} \chi' \Gamma(k)$, where χ' denote the derivative of the characteristic polynomial χ .	(10)			

Q6	a)	Prove that the chromatic polynomial satisfies the relation	(5)
		$C(\Gamma; u) = C(\Gamma^{(e)}; u) - C(\Gamma_{(e)}; u)$, where $\Gamma^{(e)}$ & $\Gamma_{(e)}$ denotes the graph obtained	
		from the graph Γ by deleting and contracting the edge 'e' respectively.	
	b)	Prove that a graph is bipartite iff it is bi-chromatic.	(5)
Q7	a)	If $A \subseteq B \subseteq A^{\lambda}$, then prove that $B^{\lambda} = A^{\lambda}$, where A & B are two subgraphs of a graph Γ .	(5)
	b)	If $A \subseteq B$ and $r(B) \neq r_0$, then prove that $\lambda(B) \in A^{\lambda}$.	(5)
Q8	a)	If a connected graph is edge-transitive but not vertex-transitive, then prove that it is bipartite.	(5)
	b)	Let λ be a simple eigenvalue of a graph Γ and \mathbf{x} be the corresponding	(5)

eigenvector with real components. If the permutation matrix **P** represents an automorphisim of Γ , then **P**x= ±x.