Registration No :

Total Number of Pages : 02
M.Sc.I

FMCE903

9 ${ }^{\text {th }}$ Semester Regular Examination 2019-20 ALGEBRAIC GRAPH THEORY
 BRANCH : M.Sc.I(MC)
 Time : 3 Hours
 Max Marks : 70
 Q.CODE : HR208

Answer Question No. 1 which is compulsory and any FIVE from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:
a) Define the spectrum of a graph and find it for K_{4}.
b) What are the values of the rank and co-rank of a graph Γ with ' n ' vertices, ' m ' edges and ' c ' components?
c) What are the components of an elementary graph?
d) If $g(\Gamma)$ denotes the number of edges in a smallest cycle (girth) of a graph Γ, then for $n \geq 3$, and $a \geq 2$, what are the values of $g\left(K_{n}\right)$ and $g\left(K_{a, a}\right)$?
e) Define the tree number of a graph Γ. What is the tree number of K_{n} ?
f) Is the line graph $L(\Gamma)$ of a regular graph Γ of degree ' k ' a regular graph? If yes then what is the degree of $L(\Gamma)$?
g) What is the chromatic polynomial of a tree T containing ' n ' vertices and what is it'schromatic number?
h) Define the cone and the suspension of a graph Γ.
i) Define the Tutte polynomial.
j) Define Cayley graph.

Q2 Prove that the coefficients of the characteristic polynomial
$\chi(\Gamma ; \lambda)=\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{n}$ of a graph Γ satisfy:
(i) $c_{1}=0$.
(ii) $-c_{2}$ is the number of edges of Γ; and
(iii) $-c_{3}$ is twice the number of triangles in Γ.

Q3 If Γ is a regular graph of degree k with n vertices and m edges, then prove that $\chi(L(\Gamma) ; \lambda)=(\lambda+2)^{m-n} \chi(\Gamma ; \lambda+2-k)$.

Q4 a) Prove that any square submatrix of the incidence matrix D of a graph Γ has determinant equal to 0 or +1 or -1 .
b) Find the tree number of the line graph $L(\Gamma)$ of a k-regular graph Γ.

Q5 Let $0 \leq \mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{n-1}$ be the Laplacian spectrum of a graph Γ with n vertices. Then prove that $\kappa(\Gamma)=\frac{\mu_{1} \mu_{2} \cdots \mu_{n-1}}{n}$. Again prove that If Γ is a connected and k regular graph and its spectrum is Spec $\Gamma=\left(\begin{array}{cccc}k & \lambda_{1} \ldots \ldots & \lambda_{s-1} \\ 1 & m_{1} \ldots \ldots & m_{s-1}\end{array}\right)$, then $\kappa(\Gamma)=n^{-1} \chi$ ' $\Gamma(k)$, where χ denote the derivative of the characteristic polynomial χ.

Q6 a) Prove that the chromatic polynomial satisfies the relation
$C(\Gamma ; u)=C\left(\Gamma^{(e)} ; u\right)-C\left(\Gamma_{(e)} ; u\right)$, where $\Gamma^{(e)} \& \Gamma_{(\mathrm{e})}$ denotes the graph obtained from the graph Γ by deleting and contracting the edge 'e' respectively.
b) Prove that a graph is bipartite iff it is bi-chromatic.

Q7 a) If $A \subseteq B \subseteq A^{\lambda}$, then prove that $B^{\lambda}=A^{\lambda}$, where $\mathrm{A} \& \mathrm{~B}$ are two subgraphs of a graph Γ.
b) If $A \subseteq B$ and $r(B) \neq r_{0}$, then prove that $\lambda(B) \in A^{\lambda}$.

Q8 a) If a connected graph is edge-transitive but not vertex-transitive, then prove that it is bipartite.
b) Let λ be a simple eigenvalue of a graph Γ and \mathbf{x} be the corresponding eigenvector with real components. If the permutation matrix \mathbf{P} represents an automorphisim of Γ, then $\mathbf{P x}= \pm \mathbf{x}$.

