Total	Numl	ber of Pages : 02	M.Sc.I FMCC303
	Ar	3 rd Semester Regular Examination 2017-18 CALCULUS I & ANALYTICAL GEOMETRY BRANCH: M.Sc.I(MC) Time: 3 Hours Max Marks: 70 Q.Code: B856 nswer Question No.1 which is compulsory and any Five from the rest. The Right hand margin indicates marks.	
Q1		Answer the following questions:	(2x10)
	a)	Define asymptote to a curve. How many asymptotes are obtained for a 6th degree equation.	,
	b)	Find radius of curvature of a curve $r = a\cos(2\theta)$.	
	c)	Define multiple points. What is the necessary and sufficient condition for any point (x, y) on $f(x, y) = 0$ to be a multiple point?	
	d)	In what condition a Cartesian equation is symmetric about axis.	
	e)	Find the center and radius of the sphere $x^2 + y^2 + z^2 - 3x + 2y + z - 12 = 0$.	
	f)	Find the condition for the plane $ax + by + cz + d' = 0$ to be the tangent to the	
		sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$.	
	g)	Define right circular cone.	
	h)	Find the cone whose vertex is at origin and whose guiding curve is the intersection of the surface $2x^2 + 3y^2 + 4z^2 = 5$ and the plane $x + y + z = 2$.	
	i)	Find the equation of the sphere whose end point of diameter is $(1, -2, 3), (3, 0, 1)$.	
	j)	Find the tangent at the origin $x^2(x^2 + y^2) = a(x - y)$.	
Q2	a)	Show that the curvature of the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the Folium	(5)
		$x^{3} + y^{3} = 3axy$ is $\frac{-8\sqrt{2}}{3a}$	
	b)	Find the radius of curvature at the origin of the curve	(5)
		$x^4 - y^4 + x^3 - y^3 + x^2 - y^2 + y = 0.$	
Q3	a)	Find the asymptotes of the curves	(5)
	L .\	$xy^2 - x^2y - 3x^2 - 2xy + y^2 + x - 2y + 1 = 0.$	(E)
	b)	Find the asymptotes of the curve $x^2y - xy^2 + xy + y^2 + x - y = 0$, and show	(5)
		that they cut the curve again in three points which lie on the line $x + y = 0$.	
Q4	a)	Find the position and nature of the multiple points of the curve $x^4 + 4ax^3 + 4a^2x^2 - b^2y^2 - 2b^3y - a^4 - b^4 = 0$.	(5)
	b)	Find the asymptotes of the curve $r\theta = a$.	(5)
	٠,		(-)
Q5	,	Trace the following curves.	/=×
	a)	$r = a\sin(3\theta)$.	(5)

http://www.bputonline.com

Registration No:

- b) $y^2(a^2 + x^2) = x^2(a^2 x^2)$.
- Q6 a) Find the values of 'a' such that the plane $x + y + z = a\sqrt{3}$ will touch the sphere $x^2 + y^2 + z^2 2x 2y 2z 6 = 0$.
 - b) Find the equation of the sphere through the circle $x^2 + y^2 + z^2 4 = 0 = x^2 + y^2 + z^2 2x 2y 4$, whose center lies on the plane x + y + z = 1.
- Q7 a) Find the equation of the cone whose vertex is (1,1,0) and whose guiding curve is the circle $x^2 + z^2 = 4$, y = 0.
 - b) Prove that the equation $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ (5) represents a cone if $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} d = 0$.
- Q8 a) Find the equation of the cylinder whose generators are parallel to the line (5) $\frac{x}{1} = \frac{y}{1} = \frac{z}{1} \text{ and whose guiding curve is the ellipse } \frac{x^2}{9} + \frac{y^2}{4} = 1, z = 1.$
 - b) Find the equation of the right circular cone with vertex (1,-2,-1), semivertical angle $\frac{\pi}{3}$ and axis $\frac{x-1}{3} = \frac{y+2}{-4} = \frac{z+1}{5}$. (5)