Registration No :					

Total Number of Pages: 02 M.Sc.I FMCE207

2nd Semester Back Examination 2017-18 **MATHEMATICS-II BRANCH**: M.Sc.I(AC)

> Time: 3 Hours Max Marks: 70 Q. CODE: C931

Answer Question No.1 which is compulsory and any five from the rest.

Answer Question No.1 which is compulsory and any five from the rest.									
The figures in the right hand margin indicate marks. Answer all parts of a question at a place.									
		, menter un parte et a queenen at a place.							
Q1		Answer the following questions :	(2 x 10)						
	a)	Define limit point of a set. Find the derived set of the set $\{x : 0 \le x < 1\}$.							
	b)	What is an open set? Give an example of an open set which is not an interval. Show that, if a set is closed, its complement is open.							
	d)	Find the limit inferior and superior of the sequence $\{(-1)^n n, n \in N\}$.							
	e)	What is the necessary and sufficient condition for the convergence of a sequence?							
	f) g)	Show that a set of natural numbers is not a group with respect to addition. Show that N is a normal subgroup of G iff gNg ⁻¹ =N.							
	h)	Define homomorphism from a group ${\cal G}$ to another group $\bar{\cal G}$. What is kernel of Homomorphism.							
	i)	Define ring with unity element and commutative ring.							
	j)	If R is a ring, then for all $a, b \in R$, then show that $(-a)(-b) = ab$.							
Q2	a)	Show that the real number field is Archimedean.	(5)						
	b)	Show that the intersection of any finite number of open sets is open.	(5)						
Q3	a)	Show that the union of two closed sets is a closed set.	(5)						
	b)	Show that a sequence cannot converge to more than one limit.	(5)						
Q4	a)	State and Prove Bolzano Wierstrass theorem for sequences.	(5)						
	b)	Show that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.	(5)						
Q5	a)	Explain Cauchy's root test for convergence of an infinite series.	(5)						
	b)	Test for the convergence of the series $\sum \frac{1}{n^{1+\frac{1}{n}}}$.	(5)						

- **Q6 a)** Let $a,b \in G$, where G is a group. If H is a subgroup of G, then show that the relation $a \equiv b \mod H$ is an equivalence relation.
 - **b)** Let H and K be finite subgroups of a group G , then show that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)} \, .$
- **Q7 a)** Show that the intersection of any two normal subgroups of a group is a normal subgroup. (5)
 - **b)** If ϕ is a homomorphism of G into G, then show that (i) $\phi(e) = e$ and (5) (ii) $\phi(x^{-1}) = \phi(x)^{-1}$.
- **Q8 a)** Show that, the set of integers under the usual operations of addition and multiplication is a ring. (5)
 - **b)** Prove that the homomorphism ϕ from a ring R into a ring R' is an isomorphism Iff the kernel $I(\phi)=0$.