Registration No :													
													M.Sc.I
The bold figures in the right hand margin indicate marks. FMCE1002 10 th Semester Regular Examination 2018-19 CRYPTOGRAPHY BRANCH: M.Sc.I(MC) Time: 3 Hours Max Marks: 70 Q.CODE: F059 Answer Question No.1 which is compulsory and any FIVE from the rest. The bold figures in the right hand margin indicate marks.													
Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: Define cryptosystems. What is encryption and decryption functions? What do you mean by randomized encryption? Define alphabets and words. What is the length of alphabet used in computing? What is block ciphers and substitution ciphers? Sketch block diagram of ECB mode. Draw the logical table of exclusive or. Define affine linear. Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $v = \begin{pmatrix} 1 & 2 \end{pmatrix}$ then find the value of Av .										(2 x 10)	
Q2	a) b)	Distinguish between symmetric and asymmetric cryptosystems. Encrypt and decrypt "Today is holiday" with key 5.											(5) (5)
Q3	a) b)	Prove that S_n ,the group of permutations of $\{0,1,,n\}$, has order n !. Write all the elements of S_3 .											(5) (5)
Q4	a) b)	The number of integers 'a' prime to 'n' in the set $\{0,1,,n-1\}$ for which a^k has a different order $\mod p$ and $\mod q$ is at least $(p-1)(q-1)/2$. Let a,u,v be positive real numbers. Then for $n\to\infty$ we have $\psi(n^a,L_n[u,v])=n^aL_n[1-u,-(a/v)(1-u)+o(1)].$										has	(5) (5)
Q5	a)	base γ_p .If $\chi=\chi(p) \mathrm{mod} p^{e(p)}$.Then prove that χ is a discrete logarithm of to the base γ .										(5)	
Q6	b)	Solve $5^x \equiv 3 \mod 201^x$ For Encrypt the plai applies bit permutation permutation key.	intext								•		(5) (10)
Q7		Discuss different type	s of at	tacks o	on cry	otosys	stems						(10)
Q8		Discuss the ECB mod	de for e	encrypt	ing lo	ng do	cume	nts.					(10)