Registration No: \square

$1^{\text {st }}$ Semester Regular Examination 2019-20
 MATHEMATICS
 BRANCH : M.Sc.I.(MSE)
 Max Marks : 100
 Time : 3 Hours
 Q.CODE : HR576

Answer Question No. 1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.
 The figures in the right hand margin indicate marks.

Part-I

Q1 Only Short Answer Type Questions (Answer All-10)
(2×10)
a) Write the order and degree of $y^{\prime \prime}+4 y^{\prime}=\sin 3 x$.
b) $\quad\left(x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0$. Verify the given equation is exact or not.
c) Define integrating factor for a differential equation.
d) Find the asymptotes parallel to the co-ordinate axes, of the curve

$$
\left(x^{2}+y^{2}\right) x-a y^{2}=0
$$

e) In how many points the asymptote of $7^{\text {th }}$ degree curve cut to the given curve ?
f) Write the formula for radius of curvature for Cartesian equation.
g) Write the maclaurin's series of $e^{2 x}$.
h) Find the Legendre polynomial for degree 1.
i) Find $\Gamma(7)$.
j) Write the value of $\Gamma\left(\frac{1}{2}\right)$.

Part- II
Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of (6 x 8) Twelve)
a) Solve the IVP $y^{\prime}=-2 x y, y(0)=1$.
b) Solve the differential equation $y^{\prime}+y \tan x=\sin 2 x, y(0)=1$.
c) Find the basis of solution for $x^{2} y^{\prime \prime}-x y^{\prime}+y=0, y_{1}=x$.
d) Solve the IVP $4 x^{2} y^{\prime \prime}+24 x y^{\prime}+25 y=0, y(1)=2, y^{\prime}(1)=-6$.
e) Solve the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}$.
f) Solve the differential equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=21 x^{-4}$.
g) Find the asymptote of the curve $=\frac{a}{\frac{1}{2}-\cos \theta}$.
h) Find all the asymptotes of the curve $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$.
i) Show that the curvature of the curve $x^{3}+y^{3}=3 a x y$ at the point $\left(\frac{3 a}{2}, \frac{3 a}{2}\right)$ is $\frac{-8 \sqrt{2}}{3 a}$
j) Solve the differential equation $y^{\prime \prime}+9 y=0$ by using power series method.
k) Find the Legendre polynomial of degree 5 .
l) Solve by Cramer's rule $x+2 y+3 z=20,7 x+3 y+z=13, x+6 y+2 z=0$.

Q3 Solve the differential equation $3 y^{\prime \prime}+10 y^{\prime}+3 y=9 x+5 \cos x$.

Q4
Find the Eigen values and Eigen vectors of $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.

Q5

Q6

Find all the asymptotes of the curve $x^{3}-x^{2} y-x y^{2}+y^{3}+2 x^{2}-4 y^{2}+2 x y+$ $x+y+1=0$.
$x=a(t+\sin t), y=a(1-\cos t)$, prove that radius of curvature is equal to $4 a \cos \left(\frac{1}{2} t\right)$.

