iveg	13116								
Tota	al Nu	umber of Pages: 02					J		M.Sc.I
		Max ma Q. Cod Answer Question No.1 which is cor	lathema M.Sc.I(3 Hours arks: 70 e: B825 npulsor	tics MC)	d an	y fiv	e fro		FMCC101
		The figures in the right ha	ind mar	gin i	ndic	ate m	narks	5.	
Q1	 a) Find the conjuction of the statement given below & specify the b) Describe different types of proofs. c) Draw Hasse diagram (D₁₂,). d) Give an example of a relation which is symmetric but no Transitive. 								(2 x 10)
	 e) What is method of Principle of Inclusion-Exclusion? f) Prove that a circuit and the complement of any spanning tree must have least one edge in common. g) Define Binary Tree and complete Binary Tree. h) Describe chromatic number. What is the Chromatic number corresponding a polygon of 10 sides? i) Define field with an example. j) What is the principle of duality on a lattice? 								
Q2	a)	Prove by Mathematical induction that	6 ²ⁿ⁺² +	72***	⊦¹ is	divisi	ble b	y 43 foı	(5)
	b)	each positive integer n. Prove that if n is a positive integer then r	n is odd i	ff n^2	is ode	d.			(5)
Q3	a)	How many positive integers not exceed	ing 1000	are o	divisit	le by	7.		(5)
	b)	Solve the recurrence relation $a_n = 3a_{n-1} + 4^n$ with the initial condition		nerati).	ing	funct	tion	method	(5)
Q4	a) b)	Show that a relation R is reflexive and outling Warshall algorithm, find all the (2,2), (2,3)}							(5) (5)
Q5	a) b)	are divisible by 3 or 5 or 7. Also indicate how many are divisible 3 or 7 but not by 5 and divisible by 3 or 5.							
Q6		Write short notes on. A. Krushkal's Algorithm, B. Dijkastra's Algorithm, C. Hamiltonian Paths & Cycles.							(10)

- **Q7** a) If (G, *) is a group with identity e and if a*a=e for all a in G, then show that G is abelian. (5)
 - **b)** Prove that H be a subgroup of a group G & a, b belongs to G then aH=bH iff $a^{-1}b \in H$. (5)
- Q8 a) Show that the set $\mathbb{Z}_7 = \{0,1,2,3,4,5,6\}$ forms a ring under addition and multiplication module 7.
 - **b)** Let R is a ring, then for all a, b, c \in R. a.0 = 0.a = 0 a.(-b) = (-a).b = -(a.b) (-a).(-b) = a.b