| iveg | 13116 | | | | | | | | | |------|--|---|---|--------------|---------|--------|-------|-----------|------------| | Tota | al Nu | umber of Pages: 02 | | | | | J | | M.Sc.I | | | | Max ma
Q. Cod
Answer Question No.1 which is cor | lathema
M.Sc.I(
3 Hours
arks: 70
e: B825
npulsor | tics
MC) | d an | y fiv | e fro | | FMCC101 | | | | The figures in the right ha | ind mar | gin i | ndic | ate m | narks | 5. | | | Q1 | a) Find the conjuction of the statement given below & specify the b) Describe different types of proofs. c) Draw Hasse diagram (D₁₂,). d) Give an example of a relation which is symmetric but no Transitive. | | | | | | | | (2 x 10) | | | e) What is method of Principle of Inclusion-Exclusion? f) Prove that a circuit and the complement of any spanning tree must have least one edge in common. g) Define Binary Tree and complete Binary Tree. h) Describe chromatic number. What is the Chromatic number corresponding a polygon of 10 sides? i) Define field with an example. j) What is the principle of duality on a lattice? | | | | | | | | | | Q2 | a) | Prove by Mathematical induction that | 6 ²ⁿ⁺² + | 72*** | ⊦¹ is | divisi | ble b | y 43 foı | (5) | | | b) | each positive integer n. Prove that if n is a positive integer then r | n is odd i | ff n^2 | is ode | d. | | | (5) | | Q3 | a) | How many positive integers not exceed | ing 1000 | are o | divisit | le by | 7. | | (5) | | | b) | Solve the recurrence relation $a_n = 3a_{n-1} + 4^n$ with the initial condition | | nerati
). | ing | funct | tion | method | (5) | | Q4 | a)
b) | Show that a relation R is reflexive and outling Warshall algorithm, find all the (2,2), (2,3)} | | | | | | | (5)
(5) | | Q5 | a)
b) | are divisible by 3 or 5 or 7. Also indicate how many are divisible 3 or 7 but not by 5 and divisible by 3 or 5. | | | | | | | | | Q6 | | Write short notes on. A. Krushkal's Algorithm, B. Dijkastra's Algorithm, C. Hamiltonian Paths & Cycles. | | | | | | | (10) | - **Q7** a) If (G, *) is a group with identity e and if a*a=e for all a in G, then show that G is abelian. (5) - **b)** Prove that H be a subgroup of a group G & a, b belongs to G then aH=bH iff $a^{-1}b \in H$. (5) - Q8 a) Show that the set $\mathbb{Z}_7 = \{0,1,2,3,4,5,6\}$ forms a ring under addition and multiplication module 7. - **b)** Let R is a ring, then for all a, b, c \in R. a.0 = 0.a = 0 a.(-b) = (-a).b = -(a.b) (-a).(-b) = a.b