## Registration no:

## Total Number of Pages: 02

## $1^{\text {st }}$ Semester Regular/Back Examination 2017-18 Discrete Mathematics BRANCH : M.Sc.I(MC) <br> Time: 3 Hours <br> Max marks: 70 <br> Q. Code: B825

## Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:
a) Find the conjuction of the statement given below \& specify the truth value .
b) Describe different types of proofs.
c) Draw Hasse diagram $\left(D_{12}, \mathrm{l}\right)$.
d) Give an example of a relation which is symmetric but not Reflexive and Transitive.
e) What is method of Principle of Inclusion-Exclusion?
f) Prove that a circuit and the complement of any spanning tree must have at least one edge in common.
g) Define Binary Tree and complete Binary Tree.
h) Describe chromatic number. What is the Chromatic number corresponding to a polygon of 10 sides ?
i) Define field with an example.
j) What is the principle of duality on a lattice ?

Q2 a) Prove by Mathematical induction that $6^{2 n+2}+7^{2 n+1}$ is divisible by 43 for each positive integer $n$.
b) Prove that if n is a positive integer then n is odd $\mathrm{iff} n^{2}$ is odd.

Q3 a) How many positive integers not exceeding 1000 are divisible by 7.
b) Solve the recurrence relation by generating function method $a_{n}=3 a_{n-1}+4^{n}$ with the initial condition $a_{0}=0$.

Q4 a) Show that a relation $R$ is reflexive and circular iff it is an equivalence relation.
b) Using Warshall algorithm, find all the transitive closure of $R=\{(1,1),(1,2)$, (2,2), (2,3)\}

Q5 a) Consider a set of integers from 1 to 250 . Find how many of these numbers are divisible by 3 or 5 or 7 . Also indicate how many are divisible 3 or 7 but not by 5 and divisible by 3 or 5 .
b) Find the number of primes not exceeding 100 using principle of inclusion and exclusion.

Q6 Write short notes on.
A. Krushkal's Algorithm,
B. Dijkastra's Algorithm,
C. Hamiltonian Paths \& Cycles.

Q7 a) If $\left(G,{ }^{*}\right)$ is a group with identity e and if $a * a=e$ for all $a$ in $G$, then show that $G$ is abelian.
b) Prove that $H$ be a subgroup of a group $G \& a, b$ belongs to $G$ then $a H=b H$ iff $a^{-i} b \in H$.

Q8 a) Show that the set $Z_{7}=\{0,1,2,3,4,5,6\}$ forms a ring under addition and multiplication module 7 .
b) Let $R$ is a ring, then for all $a, b, c \in R$.
$a .0=0 . a=0$
$a .(-b)=(-a) \cdot b=-(a \cdot b)$ $(-a) \cdot(-b)=a \cdot b$

