
Total Number of Pages: 2

bput question papers visit http://www.bputonline.com
MSc.I
FMCC602

$6^{\text {th }}$ Semester Regular Examination- 2016-17 COMPLEX ANALYSIS
 BRANCH(S): Mathematics and Computing
 Time: 3 Hour
 Max marks: 70
 Q Code : Z191

Answer Question No. 1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks

Q1 Answer the following questions:
a) If $\mathrm{f}(\mathrm{z})$ is differentiable at z_{0} show that it is continuous at z_{0}.
b) Determine the radius of convergence of the power series
$\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}} z^{n}$.
c) Find the fixed points of $T(z)=\frac{z+1}{z-1}$.
d) Find all points at which the mapping $w=z^{2}+\frac{1}{z^{2}}$ is not conformal.
e) Evaluate $\int_{\gamma} \frac{\mathrm{dz}}{\mathrm{z}^{2}}$ where γ is defined by $|\mathrm{z}|=\mathrm{d}, \mathrm{d}>0$.
f) State Morera's theorem.
g) Classify the isolated singular points of $\frac{(1+z) \cos z}{z}$.
h) State Argument principle. bput question papers visit http://www.bputonline.com
i) Find the residue at the singular point of $\mathrm{f}(\mathrm{z})=\frac{\sin 2 \mathrm{z}}{\mathrm{z}^{6}}$.
j) Evaluate $\int_{C} \frac{e^{z} \mathrm{dz}}{\pi z-\mathrm{i}}$, where C is $|\mathrm{z}|=1$.

Q2 a) Show that an analytic function with constant modulus is constant.
b) Show that $f(z)=e^{-z^{-4}}, z \neq 0$ and $f(0)=0$ is not analytic at $z=0$ although Cauchy-Riemann equations are satisfied there.
a) Define cross ratio and prove that the cross ratio is real if and only if
four points lie on a circle.
b) Find a Linear Fractional Transformation that maps left half plane into the unit disk.
bput question papers visit http://www.bputonline.com
Q4 a) State and prove Cauchy's integral formula.
b) Evaluate $\int_{C} \frac{\cosh (\pi z)}{z\left(z^{2}+1\right)} d z$ counterclockwise around the contour $C:|z|=2$.

Q5 State and prove Maximum modulus theorem
Q6 a) Represent the function $f(z)=\frac{1}{z\left(z^{2}-3 z+2\right)}$ in Laurent series for the regions (i) $0<|z|<1$ (ii) $1<|z|<2$.
b) Evaluate $\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x$

Q7 Using residue theorem evaluate the following integrals
(a) $\int_{0}^{2 \pi} \frac{\cos \theta}{3+\sin \theta} d \theta$
(b) $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+16}$

Q8
a) Prove that if a function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D , then u and v are harmonic in D .
b) State and prove the fundamental theorem of algebra.
c) Find the zeros and discuss the nature of singularities of

$$
\begin{equation*}
f(z)=\frac{z-2}{z^{2}} \sin \frac{1}{z-1} \tag{4}
\end{equation*}
$$

