Registration no:

Total Number of Pages: 2

M.Sc.I

FMCC402

$4^{\text {th }}$ Semester Regular Examination - 2016-17 Geometry of Curves \& Surfaces Branch: M.Sc.I(MC)
 Time: 3 Hours
 Max Marks: 70
 Q.CODE:Z1143

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

a) Define curve and describe different ways of representation.
b) Define Curvature and Torsion.
c) Describe Osculating Plan, Normal Plane and Rectifying plane.
d) Describe Family of surfaces .
e) Define Envelops.
f) Define Involutes and Evolutes.
g) Show that $\vec{r}^{\prime \prime \prime}=K^{\prime} \hat{n}-K^{2} \hat{t}+K \tau \hat{b}$
h) Define Parameterized Curve..
i) Define Curvilinear Co-ordinates.
j) Describe edge of regression.

Q2 a) State and prove Serret \& Frenet Formula.
b) Find the Osculating plane at a point ' t ' on the helix

$$
\begin{equation*}
x=a \cos t, y=a \sin t, z=c t \tag{5}
\end{equation*}
$$

a) Show that curvature and torsion of any curve, $r=r(t)$ are given by

$$
\begin{equation*}
\mathrm{K}=\frac{|\dot{\vec{r}} x \ddot{\vec{r}}|}{|\dot{\vec{r}}|^{3}} \& \mathrm{~T}=\frac{|\dot{\vec{r}} \ddot{\vec{r}} \dddot{\vec{r}}|}{|\dot{\vec{r}} x \ddot{\vec{r}}|^{2}} \tag{5}
\end{equation*}
$$

b) Prove that curvature and torsion of the circular helix are constant.
a) A parametrized curve has a unit speed of reparametrization iff it is a regular curve.
b) Prove that, at points common to the surface

$$
\begin{equation*}
a(y z+z x+x y)=x y z \tag{5}
\end{equation*}
$$

and a sphere whose center is origin .The tangent plane to the surface makes intercept on the axis whose sum is constant.

Q5 a) Prove that the tangent plane to the surface $x y z=a^{3}$
And the co-ordinate planes bound a tetrahedron of constant volume.
b) Show that the sum of the squares of the intercepts on the coordinate axes made by the tangent plane to the surface

$$
x^{3 / 2}+y^{3 / 2}+z^{3 / 2}=a^{3 / 2} \quad \text { is constant. }
$$

Q6 a) Find the envelope of the family of planes

$$
3 a^{2} x-3 a y+z=a^{3}
$$

And show that its edge of regression is the curve of intersection of the surfaces

$$
\begin{equation*}
x z=y^{2}, \quad x y=z \tag{5}
\end{equation*}
$$

b) On the surface of revolution $x=u \cos \emptyset, y=u \sin \emptyset, z=f(u)$ what are the parametric curves $\mathrm{u}=$ constant and what are curves $\phi=$ constant

Q7 a) Prove that the surface $x y=(z-c)^{2}$ is a developable surface.
b) Describe the first order magnitudes.

Q8 a) Prove that $\mathrm{F}=0$ is the necessary and sufficient condition that the parametric curves may form an orthogonal system.
b) Find the envelope of the plane

$$
\frac{x}{a+u}+\frac{y}{b+u}+\frac{z}{c+u}=1
$$

Where u is the parameter and determine the Edge of Regression..

