Registration No :						
Total Number of Pag	ges : 01					M.Sc.
·	-					16MCYF409

4th Semester Back Examination 2018-19 NUCLEAR CHEMISTRY BRANCH : M.Sc.(AC)

Time: 3 Hour Max Marks: 70 Q.CODE: F404

Question No.1 which is compulsory and any FIVE from the rest.

The figures in the right hand margin indicate marks.

Q1	a)	Answer the following questions: Determine the mean binding energy of 16 O, given mass of 1 H = 1.0078u, n = 1.0087 u, and 16 O = 15.9949u.	(2 x 10)
	b) c) d)	Explain why neutron has large negative magnetic moment? Predict the name of stable nuclide having mass number 64. Which nuclide (Pb ₈₂) is least favourable for radioactive decay? Why? 210 Pb; 212 Pb and 214 Pb	
	e) f) g) h) i)	How the nuclear radii are described? Write the nucleon configurations of ⁴⁰ K. Determine its spin and parity. Calculate the kinetic energy of an electron whose de Broglie wavelength is 6.626x10 ⁻¹⁰ m. What is nucleon hybridization? Give two examples of it. Describe the functioning of a Ceric Sulphate dosimeter. Write the different units used for radiation energy.	
Q2	a) b)	Describe the salient features of liquid drop model for the nucleus. Write the names and properties of stable particles appear only in some nuclear reactions.	(6) (4)
Q3	a) b)	Describe the theory of α -decay from the nuclei. Derive the relationship between a parent and daughter nuclei having same half-life period.	(6) (4)
Q4	a) b)	Write the sequence of filling of nucleons in nuclear potential well and describe the filling of nucleons based on spin-orbit coupling model. Write the use of radioactive isotopes in medical applications.	(6) (4)
Q5	a) b)	Discuss the Fermi's four factor formula for functioning of nuclear reactors. Describe the methods adopted for handling of nuclear wastes in nuclear reactors.	(6) (4)
Q6	a) b)	Why some nuclei undergo fission? Describe the theory of it. Write any two types of special nuclear reactions.	(7) (3)
Q7	a) b)	Describe the theory of neutron activation analysis. Write the various types of photonuclear reactions with their special features.	(5) (5)
Q8	a) b)	Describe the applications of radioisotope tracers in elucidating the reaction mechanisms. One gram of ²²⁶ Ra emits 11.6x10 ¹⁷ atoms of radium per year. Calculate the value of Avogadro's number if its half-life is 1600 year.	(5) (5)