Registration No:													http://	www.bputonline.com
Total Number of Pages: 02 M.Sc.														
3 rd Semester Regular/Back Examination 2017-18 Optimization Techniques BRANCH: M.Sc.(MH) Time: 3 Hours Max Marks: 70 Q.CODE: B571 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.														
Q1	a) b) c) d) e) f) g) h) i)	What is degeneracy in LPP? State the difference between TP and AP. What is an assignment problem give two application? Define a Queue. Define Payoff in Game Theory. What do mean by Sequencing?								(2 x 10)				
Q2	a)	Solve THE NON LINEAR PROGRAMMING PROBLEM by Lagrange's multipliers Maximize $Z = (x_1)^2 + (x_2)^2 + 3x_1 + 4x_2$ Subject to the constraints: $2x_1 + x_2 = 10$ and $x_1, x_2 \ge 0$ b) Solve the DYNAMIC PROGRAMMING PROBLEM Maximize $Z = b_1x_1 + b_2x_2 + b_3x_3 + \cdots + b_nx_n$ where $x_1 + x_2 + \cdots + x_n = C$ and $x_i \ge 0$							(5)					
	b)								(5)					
Q3	a)	a) Solve the L.P.P. BRANCH & BOUND METHOD Minimize $Z = 4x_1 + 3x_2$ Subject to the constraints: $5x_1 + 3x_2 \ge 30$ $x_1 \le 4, x_2 \le 6$									(5)			
	b)	x_1 , x_2 Find the DUA	AL O Max	F TH	IE FO	OLLO : x ₁ - 2 4x ₁ 7x ₁	WING 2x ₂ + + 5x + 8x	- 3x ₃ x ₂ + 6	6x ₃ =					(5)
Q4	a)	Solve BY FIE	BONA	CCI	SEAI	RCH	METH	I DOF	Minim	ize f((x) =	x ² +	54/x	(5)
	b)			Maxir	mize 2	Z= - he co x ₁ 2 x	ER C $(x_1)^2$ - constra + x_2 1 + 3 2	$(x_2)^2$ ints: \leq $x_2 \leq$	- (x ₃)		4x₁ +	6		(5)

Q5 a) Solve GOLDEN SECTION SEARCH METHOD Minimize $f(x) = x^2 + \frac{154}{9}x/\frac{1}{9}$ www.by(5)online.com (0,5]

b) Use Two Phase Simplex method to solve the L.P.P.:

(5)

Maximize $Z = 2x_1 + x_2 + x_3$

Subject to the constraints: $4 x_1 + 6 x_2 + 3 x_3 \le 8$

$$3 x_1 - 6 x_2 - 4 x_3 \le 1$$

$$2 x_1 + 3 x_2 - 5 x_3 \ge 4$$

 $x_1, x_2, x_3 \geq 0.$

Q6 a) Solve the 2x3 Game by graphical method

	- \
- "	51
١,	J,

1	3	11
8	5	2

b) Determine a Sequence for five jobs and minimize total elapsed time

/E\
(5)
(\mathbf{v})

JOB	1	2	3	4	5
MACHINE A	5	1	9	3	10
MACHINE B	2	6	7	8	4

Q7 Solve the GOAL PROGRAMMING PROBLEM

(10)

Minimize Z = d

S.T
$$120x_1 + 90x_2 = 2100$$

$$6x_1 + 3x_2 \le 90$$

$$3x_1 + 6x_2 \le 72$$

$$x_1, x_2 \ge 0$$

Q8 Write short notes on:

 (5×2)

- a) Sensitivity Analysis
- b) Transportation and Assignment Method