Registration no:						ı
						ı

Total Number of Pages: 2

M.Sc MMCC301

3rd Semester Regular / Back Examination – 2017-18

Functional Analysis
Branch: M.Sc.(MH)
Time: 3 Hours
Max marks: 70

Q Code:B586

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) What is orthonormal sets?
- b) Define resolvent set and spectrum set.
- c) $F: X \to Y$ be linear and continuous for what condition in X and Y the map is uniformly continuous.
- **d)** Define strictly convex, convex and uniformly convex.
- **e)** For what condition in p and q, the dual of c_{00} with the norm $\| \ \|_p$ is linearly isometric to l_q .
- f) Define normal, unitary and self adjoint operator.
- **g)** State schwartz inequality in an inner product space.
- h) What is Minkowski space?
- i) Define positive operator.
- j) What do you mean by re-presenter of f.
- **Q2** a) State & prove Acoll's Lemma.

(5) (5)

b) Let X be a normed space Y be a closed subspace of X and $Y \neq X$. Let r be a real number such that 0 < r < 1. Then prove that there exists some $x_r \in X$ such that

$$||x_r|| = 1$$
 and $r < dist(x_r, Y) \le 1$.

Q3 State and prove Hahn-Banach extension theorem.

(10)

- Q4 a) State and prove Closed graph theorem. (5)
 - b) Prove that if X is finite dimensional then X is complete. (5)
- Q5 a) State & prove Bounded Inverse Theorem. (5)
 - b) Let X and Y be Banach space and $F: X \to Y$ be linear map which is closed and surjective. Then prove that F is continuous and open. (5)
- Q6 a) Prove that if a normed dual space X' is separable, then so also normed space X is separable. (5)
 - b) Let X is a Hilbert space and $\sum_n |k_n|^2 < \infty$, then prove that $\sum_n k_n u_n$ (5) converges in X.
- Q7 a) Let H be a Hilbert space. For $f \in H'$, let y_f be the representer of f in H. (5) Then prove that the map $T: H' \to H$ given by $T(f) = y_f$ is a surjective conjugate linear.
 - b) Let H be a Hilbert space. Let $A, B \in BL(H)$ then prove that (5)
 - (i) $(A+B)^* = A^* + B^*$, (ii) $(AB)^* = B^*A^*$.
- Let K = C and $A \in BL(H)$ then prove that there are unique self adjoint operators B and C on H such that A = B + iC. Again prove that A is normal if and only if BC=CB, A is unitary if and only if BC=CB and $B^2 + C^2 = I$, and A is self adjoint if and only if C=0.