Registration No: $\square$
Total Number of Pages: 02
M.Sc.

MMCC302

## $3^{\text {rd }}$ Semester Regular/Back Examination 2017-18 <br> Matrix Algebra <br> BRANCH : M.Sc.(MC) <br> Time: 3 Hours <br> Max Marks: 70 <br> Q.CODE: B588

Answer Question No. 1 which is compulsory and any five from the rest.
The figures in the right hand margin indicate marks.
Q1 Answer the following questions:
a)

If $A=\left(\begin{array}{ccc}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{4} & \mathbf{5} & \mathbf{6}\end{array}\right) \& \mathrm{X}=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right] \quad B=\left[\begin{array}{c}\mathbf{5 0} \\ \mathbf{1 2 2}\end{array}\right]$ Then express $B$ as a linear combition of columns of $A$.
b) If G is a triangular matrix then what is the value of $\operatorname{det}(\mathrm{G})$ ?
c) When $A$ is said to be positive definite if $A$ is a $n \times n$ real symmetric matrix.
d) What is Cauchy Schwarz Inequelity?
e) For any real number $\mathrm{P} \geq 1$ define P -norm?
f) If $\mathrm{A}=\left[\begin{array}{cc}\mathbf{1 0 0 0} & 999 \\ \mathbf{9 9 9} & 998\end{array}\right]$ Find $\|A\|_{1},\|A\|_{\infty},\left\|A^{-1}\right\|_{\infty}\left\|A^{-1}\right\|_{1}$
g) If $x=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)^{\top} \& y=\left(\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}\right)^{\top}$. Define inner product of $x \& y$.
h) When a set of vectors $q_{1}, q_{2}, q_{3}, \ldots \ldots q_{k}$ is said to be orthonormal?
i) Find the relation between $R(A)$ perp. and $N\left(A^{\top}\right)$.
j) Determine the eigen values for the following matrix, $A=\left(\begin{array}{ll}3 & \mathbf{1} \\ \mathbf{6} & 2\end{array}\right)$.

Q2 Answer the questions:
a) Solve the following system
$\left[\begin{array}{ccc}8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
b) Find the matrix equation for the differential equation
$-\mathrm{u}(\boldsymbol{x})+\mathrm{cu}^{\prime}(\boldsymbol{x})+\mathrm{du}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)=\mathrm{f}(\boldsymbol{x}) \quad 0<x<1$
With boundary condition
$u(0)=0, u(1)=0$
Using
$M=6, h=1 / 6$
Q3 a) Use column oriented version of forward substitution solve the following
lower Triangular system
(5)
$\left[\begin{array}{ccc}5 & 0 & 0 \\ 2 & -4 & 0 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{c}15 \\ -2 \\ 10\end{array}\right]$
b)

Let $A=\left[\left(\begin{array}{cccc}4 & -2 & 4 & 2 \\ -2 & 10 & -2 & -7 \\ 4 & -2 & 8 & 4 \\ 2 & -7 & 4 & 7\end{array}\right)\right]$ Use Cholesky's Method to calculate
Cholesky factor R.

Q4 a) Let $M$ be any $n \times n$ non singular matrix and let $A=M^{\top} M$, Then prove that $A$ is positive definite.
b) If $\mathrm{A}=\left(\begin{array}{cccc}2 & 4 & 2 & 3 \\ -2 & -5 & -3 & -2 \\ 4 & 7 & 6 & 8 \\ 6 & 10 & 1 & 12\end{array}\right) \quad \mathrm{b}=\left(\begin{array}{c}-3 \\ 3 \\ -1 \\ -16\end{array}\right)$

Then calculate $\mathrm{L} \& \mathrm{U}$ such that $\mathrm{A}=\mathrm{LU}$ \& solve the system $\mathrm{A} x=\mathrm{b}$, where $x=$ $\left(\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right)^{\top}$

Q5 a)
Solve the system $\left(\begin{array}{ccc}2 & 2 & -4 \\ 1 & 1 & 5 \\ 1 & 3 & 6\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}10 \\ -2 \\ -5\end{array}\right)$, By Gaussian Elimination with partial pivoting.
b) Prove that $\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|$

Q6 a)
Use QR - decomposition to solve the system $\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
b) Let $x, y \in \mathrm{R}^{\mathrm{n}}$ with $x \neq \mathrm{y}$ but $\|x\|_{2}=\|y\|_{2}$. Then prove that there is a unique reflector Q
such that $\mathrm{Q} x=\mathrm{y}$
Q7 a) Let $\mathrm{A} \in R^{n \times m} \& \mathrm{~b} \in \mathrm{R}^{\mathrm{n}}$, $\mathrm{n}>\mathrm{m}$ \& suppose that ' A ' has full rank than the least square problem for the over determined system $A x=b$ has a unique solution which can be found by solving the non singular system $\check{R} x=\hat{c}$, where $\binom{\hat{c}}{d}=c$ $=\mathrm{Q}^{\top} \mathrm{b}$, र̌ $\in R^{m \times m} \& Q \in R^{n \times n}$
b) $\mathrm{A} \in R^{n \times n}$ can be expressed as product $\mathrm{A}=\mathrm{QR}$, using reflectors where Q is a orthogonal matrix and $R$ is a upper triangular matrix

Q8 a)
Find QR - Transform of $A=\left(\begin{array}{ccc}1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0\end{array}\right)$ Using Gram - Schmidt Process

