Registration No:		ation No:		
Total Number of Pages: 02 M.Sc.				
3 rd Semester Regular/Back Examination 2017-18 Matrix Algebra BRANCH: M.Sc.(MC) Time: 3 Hours Max Marks: 70 Q.CODE: B588 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.				
Q1	-1	Answer the following questions: (2 x 10)	
	a)	If $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ & $X = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$ $B = \begin{bmatrix} 50 \\ 122 \end{bmatrix}$ Then express B as a linear combition of columns of A.		
	b) c) d) e) f)	If G is a triangular matrix then what is the value of det(G)? When A is said to be positive definite if A is a nxn real symmetric matrix. What is Cauchy Schwarz Inequelity? For any real number $P \ge 1$ define P-norm? If $A = \begin{bmatrix} 1000 & 999 \\ 999 & 998 \end{bmatrix}$ Find $ A _1$, $ A _{\infty}$, $ A^{-1} _{\infty}$ $ A^{-1} _1$		
	g) h) i) j)	If $x=(x_1 \ x_2 \ x_3)^T \& y=(y_1 \ y_2 \ y_3)^T$. Define inner product of $x \& y$. When a set of vectors $q_1, q_2, q_3, \ldots, q_k$ is said to be orthonormal? Find the relation between R(A) perp. and N(A ^T). Determine the eigen values for the following matrix, $A=\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$.		
Q2	a)	Answer the questions : (5)		
		$\begin{bmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$		
	b)	Find the matrix equation for the differential equation $ -u''(x) + cu'(x) + du(x_i) = f(x) \qquad 0 < x < 1 $ With boundary condition $ u(0) = 0, \ u(1) = 0 $ Using $ M = 6 \ , \ h = 1/6 $		
Q3	a)	Use column oriented version of forward substitution solve the following lower Triangular system (5) $\begin{bmatrix} 5 & 0 & 0 \\ 2 & -4 & 0 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 15 \\ -2 \\ 10 \end{bmatrix}$		
	b)	Let A = $\begin{bmatrix} 4 & -2 & 4 & 2 \\ -2 & 10 & -2 & -7 \\ 4 & -2 & 8 & 4 \\ 2 & -7 & 4 & 7 \end{bmatrix}$ Use Cholesky's Method to calculate		

Cholesky factor R.

Q4 a) Let M be any n x n non singular matrix and let $A = M^{T}M$, Then prove that A is positive definite. (5)

b) If
$$A = \begin{pmatrix} 2 & 4 & 2 & 3 \\ -2 & -5 & -3 & -2 \\ 4 & 7 & 6 & 8 \\ 6 & 10 & 1 & 12 \end{pmatrix}$$
 & $b = \begin{pmatrix} -3 \\ 3 \\ -1 \\ -16 \end{pmatrix}$ (5)

Then calculate L & U such that A = LU & solve the system Ax = b, where $x = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \end{pmatrix}^T$

Solve the system $\begin{pmatrix} 2 & 2 & -4 \\ 1 & 1 & 5 \\ 1 & 3 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 10 \\ -2 \\ -5 \end{pmatrix}$, By Gaussian Elimination with

partial pivoting. **b)** Prove that $||A||_1 = max_{1 \le j \le n} \sum_{i=1}^n |a_{ii}|$ (5)

- Q6 a) Use QR decomposition to solve the system $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (5)
 - **b)** Let $x, y \in \mathbb{R}^n$ with $x \neq y$ but $||x||_2 = ||y||_2$. Then prove that there is a unique reflector Q such that Qx = y
- Q7 a) Let $A \in R^{n \times m} \& b \in R^n$, n>m & suppose that 'A' has full rank than the least square problem for the over determined system Ax = b has a unique solution which can be found by solving the non singular system $\check{R}x = \hat{c}$, where $\binom{\hat{c}}{d} = c$ = Q^Tb , $\check{R} \in R^{m \times m} \& Q \in R^{n \times n}$
 - **b)** $A \in \mathbb{R}^{n \times n}$ can be expressed as product A=QR, using reflectors where Q is a orthogonal matrix and R is a upper triangular matrix
- Q8 a) Find QR Transform of A = $\begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$ Using Gram Schmidt Process
 - **b)** Let S be any subspace of R^n . Then for every $x \in R^n$, there exist unique element $s \in S$ and s perp. $\in S$ perp. for which x = s + s perp.