Reg	gistr	ration No :	
Total Number of Pages: 02 2nd Semester Back Examination 2017-18 COMPLEX ANALYSIS BRANCH: M.Sc.(MC), M.Sc.(MH) Time: 3 Hours Max Marks: 70 Q.CODE: C808 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. Answer all parts of a question at a place.			
Q1		Answer the following questions: Verify Cauchy Riemann equation f(z)=ln $ z $ What is bilinear Transformation? Give one example. Find co-efficient of $(z-\pi)^2$ in the Taylor's series expansion of $f(z)=\{\frac{\sin z}{z-\pi}$ if $z\neq\pi$ -1 , if $z=\pi$ around of z.	(2 x 10)
	d)	If f:c $\rightarrow c$ be analytic except for a simple pole at z=0 and g: c $\rightarrow c$ be analytic, then find the value of $\begin{cases} \frac{Res}{z=0} f(z).g(z) \\ \frac{Res}{z=0} f(z) \end{cases}$	
	e) f) g) h)	What is the principal value of log($i^{\frac{1}{4}}$)? Define essential singularities and give an example? Define Roucher's Theorem? Give one example. For the function $f(z) = \sin(\frac{1}{\cos^{\frac{1}{2}}})$ at the point $z=0$ is which singularity.	
	i) j)	If $f(z) = \sum_{n=0}^{15} z^n$ for $z \in c$, if c: $ z-i = 2$ then find the value of $\oint \frac{f(z)}{(z-i)^{15}} dz$ State Morera's Theorem?	
Q2	a) b)	Prove that an entire bounded function in a complex plane is constant. Find the linear fractional transformation which maps i, 0, 1 onto 2+I ,2 ,3	(5) (5)
Q3	a) b)	State and prove the Cauchy residue Theorem? $\int_c \ \overline{z} dz$, c from 0 along the parabola y=x² to 1+i	(5) (5)
Q4	a)	Suppose that f is analytic in bounded domain D and continuous on \overline{D} . Then prove that $ f(z) $ attain its maximum at some point on the boundary of D.	(5)
	b)	Check the function $u = \frac{x}{x^2 + y^2}$ is harmonic? if yes then find the harmonic conjugate of u.	(5)
Q5	a) b)	Find the Laurent series of $f(z) = \frac{2z-3i}{z^2-3iz-2}$ in the region $1 < z < 2$. Find the residues of $f(z) = \frac{z^2-2z}{(z+1)^2(z^2+4)}$	(5) (5)
Q6	a)	Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(3n)!}{2^n (n!)^3} z^n$.	(5)

- **b)** Evaluate $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx$ (5)
- Q7 a) Let f be meromorphic in a domain $D \subseteq C$ and have only finitely many (5) zeros and pole in D. if C is a simple closed contour in D such that no zeros or poles of f lies on C ,then $\frac{1}{2\pi i} \oint \frac{f'(z)}{f(z)} dz = \text{N-P, where N is no of zeros and P is no of poles of f inside C, each counted according to their order.}$ **b)** Evaluate: $\int \frac{2z^3 - 3}{z(z - 1 + i)^2} dz$, c consists of |z| = 2 counter clockwise and |z| = 1
 - (5) clockwise.
- a) Prove that $|\oint f(z)dz| \le MI$, where $M = \max_{z \in c} |f(z)|$ and I is the length of c. b) Evaluate: $\oint \frac{e^z + z}{z^3 z} dz$, c: $|z| = \frac{\pi}{2}$ using Cauchy Residue theorem Q8 (5) (5)