Registration No :

\square

Total Number of Pages : 02

M.Sc.

MMCC203

$2^{\text {nd }}$ Semester Back Examination 2017-18
 COMPLEX ANALYSIS
 BRANCH : M.Sc.(MC), M.Sc.(MH)
 Time : 3 Hours
 Max Marks : 70
 Q.CODE : C808

Answer Question No. 1 which is compulsory and any five from the rest.
The figures in the right hand margin indicate marks.
Answer all parts of a question at a place.
Q1 Answer the following questions :
a) Verify Cauchy Riemann equation $f(z)=\ln |z|$
b) What is bilinear Transformation? Give one example.
c) Find co-efficient of $(z-\pi)^{2}$ in the Taylor's series expansion of $f(z)=\left\{\frac{\sin z}{z-\pi}\right.$, if $z \neq \pi$

$$
-1 \quad, \quad \text { if } z=\pi \quad \text { around } \quad \text { of } z .
$$

d) If $\mathrm{f}: \mathrm{c} \rightarrow \mathrm{c}$ be analytic except for a simple pole at $\mathrm{z}=0$ and

e) What is the principal value of $\log \left(i^{\frac{1}{4}}\right)$?
f) Define essential singularities and give an example?
g) Define Roucher's Theorem? Give one example.
h) For the function $f(z)=\sin \left(\frac{1}{\cos _{\frac{1}{2}}^{1}}\right)$ at the point $z=0$ is which singularity.
i) If $f(z)=\sum_{n=0}^{15} z^{n}$ for $z \in c$, if $\mathrm{c}:|\mathrm{z-i}|=2$ then find the value of $\oint \frac{f(z)}{(z-i)^{15}} \mathrm{dz}$
j) State Morera's Theorem?

Q2 a) Prove that an entire bounded function in a complex plane is constant.
b) Find the linear fractional transformation which maps i, 0,1 onto $2+1,2,3$

Q3 a) State and prove the Cauchy residue Theorem?
b) $\int_{c} \bar{z} \mathrm{dz}, \mathrm{c}$ from 0 along the parabola $\mathrm{y}=\mathrm{x}^{2}$ to $1+\mathrm{i}$

Q4 a) Suppose that f is analytic in bounded domain D and continuous on \bar{D}.
Then prove that $|f(z)|$ attain its maximum at some point on the boundary of D.
b) Check the function $u=\frac{x}{x^{2}+y^{2}}$ is harmonic? if yes then find the harmonic conjugate of u.

Q5 a) Find the Laurent series of $f(z)=\frac{2 z-3 i}{z^{2}-3 i z-2}$ in the region $1<|z|<2$.
b) Find the residues of $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$

Q6 a) Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(3 n)!}{2^{n}(n!)^{3}} z^{n}$.
b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$

Q7 a) Let f be meromorphic in a domain $\mathrm{D} \subseteq C$ and have only finitely many zeros and pole in D . if C is a simple closed contour in D such that no zeros or poles of f lies on C ,then $\frac{1}{2 \pi \mathrm{i}} \oint \frac{f^{\prime}(z)}{f(z)} d z=\mathrm{N}-\mathrm{P}$, where N is no of zeros and P is no of poles of f inside C , each counted according to their order.
b) Evaluate: $\int \frac{2 z^{3}-3}{z(z-1+i)^{2}} d z, c$ consists of $|z|=2$ counter clockwise and $|z|=1$ clockwise.

Q8 a) Prove that $|\oint f(z) d z| \leq M I$, where $M=\max _{z \in c} \mid \mathrm{f}(\mathrm{z})$ | and I is the length of c .
b) Evaluate: $\oint \frac{e^{z}+z}{z^{3}-z} d z, \mathrm{c}:|\mathrm{z}|=\frac{\pi}{2}$ using Cauchy Residue theorem

