www.bputonline.com

Registration no:

$2^{\text {nd }}$ Semester Regular Examination - 2016-17
 PARTIAL DIFFERENTIAL EQUATION
 BRANCH(S): M.Sc.(Z1163MH)
 Time: 3 Hours
 Max Marks: 70
 Q.CODE:Z1163

Answer Question No. 1 which is compulsory and any five from the rest.

 The figures in the right hand margin indicate marks.Q1 Answer the following questions:
a) Find the partial differential equation by eliminating arbitrary function from $f\left(x+y+z, x^{2}+\right.$ $\left.y^{2}+z^{2}\right)=0$.
b) Find the general integral of the linear partial differential equation $y^{2} p-x y q=x(z-2 y)$.
c) Write the Charpit's auxiliary equation..
d) Classify the partial differential equation $u_{x x}+4 u_{x y}+4 u_{y y}=0$.
e) Write the Laplacian in cylindrical and spherical coordinate form.
f) Solve $4 u_{x}+u_{y}=3 u, u(0, y)=e^{-5 y}$.
g) Write the two substitutions are introduced in D'Alemberts method to solve Partial differential equations.
h) Write the Duhamel's Principle..
i) Write the necessary and sufficient condition that a surface be an integral surface of a partial differential equation.
j) Show that the partial differential equation $u_{t t}-c^{2} u_{x x}=0$ is hyperbolic and find its Canonical form.

Q2 a) Solve the equations $x p=y q, z(x p+y q)=2 x y$ are compatible and solve them.
b) Solve using Charpit's Method $z^{2}=p q x y$.
a) Show that the only solution of $\nabla^{2} u=0$ depending on $r=\sqrt{x^{2}+y^{2}}$ is $u=a \ln r+b$ with constants 'a' and 'b'.
b) Find the electrostatic potential between two concentric spheres of radii $r_{1}=2 \mathrm{~cm}$ and $r_{2}=4 \mathrm{~cm}$ kept at the potential $U_{1}=220$ volt, and $U_{2}=140$ volt respectively.

Q4

Q5

Q8 Solve the diffusion equation $u_{t}-k u_{x x}=e^{-x}$ on $x \in R, t>0$ with initial condition $u(x, 0)=$ 0

