www.bputonline.com				
Registration no:				

Total Number of Pages: 01

<u>WI.SC</u> MAMC205

2nd Semester Regular Examination – 2016-17 PARTIAL DIFFERENTIAL EQUATION BRANCH(S): M.Sc.(Z1163MH)

Time: 3 Hours Max Marks: 70 Q.CODE:Z1163

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

- a) Find the partial differential equation by eliminating arbitrary function from $f(x + y + z, x^2 + y^2 + z^2) = 0$.
- b) Find the general integral of the linear partial differential equation $y^2p xyq = x(z 2y)$.
- c) Write the Charpit's auxiliary equation..
- d) Classify the partial differential equation $u_{xx} + 4u_{xy} + 4u_{yy} = 0$.
- e) Write the Laplacian in cylindrical and spherical coordinate form.
- f) Solve $4u_x + u_y = 3u, u(0, y) = e^{-5y}$.
- g) Write the two substitutions are introduced in D'Alemberts method to solve Partial differential equations.
- h) Write the Duhamel's Principle..
- i) Write the necessary and sufficient condition that a surface be an integral surface of a partial differential equation.
- j) Show that the partial differential equation $u_{tt} c^2 u_{xx} = 0$ is hyperbolic and find its Canonical form.
- Q2 a) Solve the equations xp = yq, z(xp + yq) = 2xy are compatible and solve them. (5)
 - **b)** Solve using Charpit's Method $z^2 = pqxy$.

(5)

- Q3 a) Show that the only solution of $\nabla^2 u = 0$ depending on $r = \sqrt{x^2 + y^2}$ is $u = a \ln r + b$ with constants 'a' and 'b'.
 - b) Find the electrostatic potential between two concentric spheres of radii $r_1 = 2cm$ and $r_2 = 4cm$ (5) kept at the potential $U_1 = 220volt$, and $U_2 = 140 volt$ respectively.
- Show that $u_n = r^n \cos n\theta$, $u_n = r^n \sin n\theta$, n = 0,1,... are solution of Laplace's equation (10) $\nabla^2 u = 0 \text{ with } \nabla^2 u = u_{rr} + \frac{1}{2} u_r$
- Q5 a) Find the surface which intersects the surfaces of the system z(x + y) = c(3z + 1) orthogonally and which passes through the circle $x^2 + y^2 = 1$, z = 1.
 - b) Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p x)(q y)$ which passes through the X-axis. (5)
- Q6 Solve $u_t u_{xx} = 0$, u(x, 0) = u(0, t) = 0; u(1, t) = t for $0 \le x \le 1$, $0 \le t \le 0.5$ (10)
- Q7 Derive the two dimensional wave equation $u_t = c^2(u_{xx} + u_{yy})$ (10)
- Q8 Solve the diffusion equation $u_t ku_{xx} = e^{-x}$ on $x \in R$, t > 0 with initial condition u(x,0) = 0