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Answer Question No.1 which is compulsory and any five from the rest

Q1

Q2

Q3

The figures in the right hand margin indicate marks

Answer the following questions: (2x10)
Give an example of a set which does not contain its lub and glb.

State Archimedean Principle.

What do you mean by absolute convergence of a sequence? Does absolute
convergence of a sequence imply convergence of that sequence?

Examine whether the sequence (x,) with x,, = n? + n is convergent.
. . w [2n) .
Examine whether the series Yo, (5—:) 1s convergent.

Show that a group containing two elements must be abelian.

Let G be an abelian group and H any subgroup of G. Show that A is a normal
subgroup of G.

Let G be a group and ¢ be a homomorphism on G, then show that
(CI)(x))_1 = ®(x~ 1), for eachx € G.

Define an integral domain.

Let R be a ring, then show that for all a,b € R,a0 = 0a = 0.

Show that Q is an Archimedean ordered field which is not complete. [5]
State and prove Bolzano — Weierstrass Theorem for sets. [5]
Show that every convergent sequence is bounded. [5]

Sh i — ", [5]
ow that the sequence (x,) with x,, = (1 + n) is convergent.
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Q4 a)
b)
Q5 a)
b)
Q6 a)
b)
Q7 a)
b)
Q8 a)
b)
c)

State and prove D’ Alembert’s Ratio Test on convergence of an infinite series.
Discuss the convergence of the series Y-, ( L2 )

2n ' 3n

If H is a subgroup of a group G, and a € G. Let aHa™! = {aha™': h € H}.
Show that aHa™! is a subgroup of G.

Let H and K be two subgroups of a group G. Let HK = {hk:h € H,k € K }.
Show that HK is a subgroup of G if and only if HK = KH.

Let G and G be two groups and ¢ be a homomorphism of G into G with kernel
K, then show that K is a normal subgroup of G.

Let G and G be two groups and ¢ be a homomorphism of G onto G with
kernel K, then show that G/K is isomorphic to G.

Show that a finite integral domain is a field.
If p is a prime number then show that J, the ring of integers mod p is a field.

Show that a monotonic increasing sequence which is bounded above is
convergent.

Show that the series Y- (nip) converges if p > 1.
Show that every permutation is the product of its cycles.
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