						ĺ
Degistration	2001					
Registration	no:					1
•						1

Tota	al Nu	mber of Pages: 2 bput question papers visit http://www.bputonline.com	<u>MSc.I</u> FMCC202						
2 nd Semester Regular Examination– 2016-17 ANALYSIS-I BRANCH(S): Mathematics and Computing Time: 3 Hour Max Marks: 70 Q Code : Z789 Answer Question No.1 which is compulsory and any five from the rest The figures in the right hand margin indicate marks									
Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: Give an example of a set which is bounded below but not bounded above. Give an example of an open set which is not an interval. State Dedekind's property. Prove that $\lim(n^{1/n}) = 1$ Define Cauchy sequence. Test the convergence of the series $\sum a_n$ where a_n is $\frac{1}{\log n}$. Give an example of uniformly convergent series not absolutely convergent. State intermediate value theorem. Prove that a function which is uniformly continuous on an interval is continuous on that interval. Give an example of a sequence of continuous functions converging to a discontinuous function. bput question papers visit http://www.bputonlin	(2 x 10) ne.com						
Q2	a) b)	Show that every open interval is an open set. Prove that the set of rational numbers in [0, 1] is countable	[5] [5]						
Q3	a)	Prove that the union of two closed sets is a closed set.	[5]						
	b)	Prove that a set is closed iff its complement is open.	[5]						
Q4	a) b)	Prove that every bounded sequence with a unique limit point is convergent. Prove that every convergent sequence is bounded and has a unique limit.	[5] [5]						
Q5	a)	Show that every Cauchy sequence is bounded and every convergent sequence is Cauchy.	[5]						

www.bputonline.com

- b) Suppose that $a_n \ge a_{n+1} \ge 0$. Then show that the series $\sum a_n$ [5] converges if and only if the series $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.
- Q6 a) Show that $f_n(x) = n^2 x^n (1 x), x \in [0, 1]$ converges point wise (but not uniformly) to a function which is continuous on [0, 1]. [5]
 - b) Prove that if $\sum f_k(x)$ and $\sum g_k(x)$ are uniformly convergent, then [5] $\sum (f_k(x) + g_k(x))$ is uniformly convergent.
- Q7 a) Show that the series $\sum \frac{x^n \sin nx}{n^p}$ (*p* > 0) converges uniformly on the [5] interval [-1, 1].
 - b) Prove that a function which is continuous on a closed interval is also [5] uniformly continuous on that interval.
- Q8 a) Prove that $f(x) = \sin \frac{1}{x}, x \neq 0$ [3] = 0, x = 0 bput question papers visit http://www.bputonline.com

Is not uniformly continuous $0n [0, \infty]$.

- b) Show that the series $\sum \frac{1}{n^p}$ converges , if p > 1, and diverges if $p \le 1$. [4]
- c) Prove that the union of an arbitrary family of open sets is open. [3]
