Registration no: \square

Total Number of Pages: 2 bput question papers visit http://www.bputonline.com
MSc.I
FMCC202

$2^{\text {nd }}$ Semester Regular Examination- 2016-17
 ANALYSIS-I
 BRANCH(S): Mathematics and Computing Time: 3 Hour Max Marks: 70
 Q Code: Z789

Answer Question No. 1 which is compulsory and any five from the rest

 The figures in the right hand margin indicate marksQ1 Answer the following questions:
a) Give an example of a set which is bounded below but not bounded above.
b) Give an example of an open set which is not an interval.
c) State Dedekind's property.
d) Prove that $\lim \left(n^{1 / n}\right)=1$
e) Define Cauchy sequence.
f) Test the convergence of the series $\sum a_{n}$ where a_{n} is $\frac{1}{\log n}$.
g) Give an example of uniformly convergent series not absolutely convergent.
h) State intermediate value theorem.
i) Prove that a function which is uniformly continuous on an interval is continuous on that interval.
j) Give an example of a sequence of continuous functions converging to a discontinuous function. bput question papers visit http://www.bputonline.com
Q2 a) Show that every open interval is an open set.
b) Prove that the set of rational numbers in [0, 1] is countable

Q3 a) Prove that the union of two closed sets is a closed set.
b) Prove that a set is closed iff its complement is open.

Q4 a) Prove that every bounded sequence with a unique limit point is convergent.
b) Prove that every convergent sequence is bounded and has a unique limit.

Q5 a) Show that every Cauchy sequence is bounded and every convergent sequence is Cauchy.
b) Suppose that $a_{n} \geq a_{n+1} \geq 0$. Then show that the series $\sum a_{n}$ converges if and only if the series $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ converges.

Q6 a) Show that $f_{n}(x)=n^{2} x^{n}(1-x), x \in[0,1]$ converges point wise (but not uniformly) to a function which is continuous on [0, 1].
b) Prove that if $\sum f_{k}(x)$ and $\sum g_{k}(x)$ are uniformly convergent, then $\sum\left(f_{k}(x)+g_{k}(x)\right)$ is uniformly convergent.
Q7 a) Show that the series $\sum \frac{x^{n} \sin n x}{n^{p}}(p>0)$ converges uniformly on the interval $[-1,1]$.
b) Prove that a function which is continuous on a closed interval is also uniformly continuous on that interval.
a) Prove that $f(x)=\sin \frac{1}{x}, x \neq 0$

Q8

$$
\begin{equation*}
=0, x=0 \tag{3}
\end{equation*}
$$

bput question papers visit http://www.bputonline.com Is not uniformly continuous $0 \mathrm{n}[0, \infty]$.
b) Show that the series $\sum \frac{1}{n^{p}}$ converges, if $p>1$, and diverges if $p \leq 1$.
c) Prove that the union of an arbitrary family of open sets is open.

