Reg	istrat	tion no:											ŀ	nttp://w	ww.bputonline.com
Tota	Total Number of Pages: 02									M. Sc. 15MMCC104					
A	nsw	er Questi The fi		o.1 v	B Whice	Abstand Tin Ma Q (tract ch : I ne: 3 x ma Code cor	: Alg M.Sc B Ho arks e:B1 npu	gebra c.(Ml ours : 70 052 Isor	a ⊣) y an	d ar	ny fiv	ve f		the rest.
Q1	a)	Answer the following questions: Define a symmetric group. Group of order 9 is abelian, true or false? Explain.											(2 x 10)		
	d)	Give an exa f = (2 4 7) Define Sim	, g = (396					: Tran	sposit	tion.				
	g)	Let $G = \{ : $ the binary of Let R be a Define a sp	perati ring su	on.(N ıch th	Multip nat x	olicati	on). <i>for</i>	ls it a all x	abelia	n ? ¯	-				
	i)	ls an irredu	ucible	elen	nent	is pr	ime?	Ехр	lain.						
	j)	If O(G)=15,	f: G	→ G											
		f(a)	$=a^4$	giver	n map	ping	is Au	omo	rphisr	n or r	not?				
Q2	a)	Let G be a $gNg^{-1} = N$					s a n	orma	ıl sub	grou	p of (3 iff			(5)
	b)	State and F	Prove	Seco	nd Is	somo	rphi	sm t	heor	e m .					(5)
Q3	a)	G is a simp	ole aro	up, I	N 🖘	<i>G</i> .N i	is ma	xima	al in (G iff	<u>G</u> is	simp	ole.		(5)
	b)	Prove that appropriate	every								A 11			some	(5)
Q4 http://www.bputon	·	Define Ur factorization product of	on do	maiı	n ev	ery/	non	zer	o no					•	

- b) Define a Euclidean ring. Prove that an Euclidean ring possesses a unit (5 element.
- **Q5 a)** Prove that any two Sylow P-subgroups of a finite group G are conjugate in G. (5)
 - **b)** If R is an unique factorization domain then prove that the product of two primitive polynomials in R[x] is again a primitive polynomial in R[x]
- Q6 a) Show that if O(G)=30, G is not simple. (5)
 - b) Find a basis of $Q(\sqrt{3}, \sqrt{5})$ over Q. (5)
- **Q7 a)** Prove that a polynomial of degree n over a field can have at most n roots in any extension field. (5)
 - **b)** Let Q be the field of rational numbers. Let $f(x) = x^3 2$. Find the three roots of f(x).
- Q8 a) Find the degree of a minimal splitting field of $x^6 + 1$ over Q. (5)
 - **b)** If E/K is Galois and F, an extension of K, then [EF:F] divides [E:K]. (5)