$1^{\text {st }}$ Semester Back Examination - 2017-18

Abstract Algebra

Branch : M.Sc.(MH)
Time: 3 Hours
Max marks: 70
Q Code:B1052

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

a) Define a symmetric group.
b) Group of order 9 is abelian, true or false ? Explain.
c) Give an example of a dihedral group.
d) $f=(247), g=(396)$ find fog and define Transposition.
e) Define Simple Ring.
f) Let $G=\left\{1, i_{2}-i,-1\right\}$. Be a set, $i=\sqrt{-1}$. Is G a group with respect to the binary operation.(Multiplication). Is it abelian ?
g) Let R be a ring such that $x^{3}=x$ for all $x \in R$. Is R commutative ?
h) Define a splitting field. Give an example.
i) Is an irreducible element is prime? Explain.
j) If $\mathrm{O}(\mathrm{G})=15, f: G \rightarrow G$

$$
f(a)=a^{4}, \text { given mapping is Automorphism or not? }
$$

Q2 a) Let G be a group. Prove that N is a normal subgroup of G iff $g N g^{-1}=N$ for every $g \in G$.
b) State and Prove Second Isomorphism theorem.

Q3 a) G is a simple group, $N \triangleleft G . N$ is maximal in G iff $\frac{G}{N}$ is simple.
b) Prove that every group is isomorphic to a subgroup of $A(S)$ for some appropriate S.

Q4 a) Define Unique Factorization domain. Prove that in a unique factorization domain every non zero non unit element as a product of irreducible element is unique.
b) Define a Euclidean ring. Prove that an Euclidean ring possesses a unit element.

Q5 a) Prove that any two Sylow P-subgroups of a finite group G are conjugate in G .
b) If R is an unique factorization domain then prove that the product of two primitive polynomials in $R[x]$ is again a primitive polynomial in $R[x]$

Q6 a) Show that if $O(G)=30$, G is not simple.
b) Find a basis of $Q(\sqrt{3}, \sqrt{5})$ over Q.

Q7 a) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.
b) Let Q be the field of rational numbers. Let $f(x)=x^{3}-2$. Find the three roots of $f(x)$.

Q8 a) Find the degree of a minimal splitting field of $x^{6}+1$ over Q .
b) If E / K is Galois and F, an extension of K, then [$E F: F]$ divides $[E: K]$.

