Registration no: \square

Total Number of Pages: 2
MSc.
MMCC103

$1^{\text {st }}$ Semester Back Examination - 2017-18
 Discrete Mathematics
 Branch: M.Sc.(MC)
 Time: 3 Hours
 Max marks: 70
 Q Code:B913

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions:
a) Prove that $\sim \forall x[p(x) \rightarrow q(x)] \equiv \exists x(p(x) \Lambda \sim q(x))$.
b) Let p and q be propositions.
p : Swimming in the river is allowed.
q : Alligators have been spotted in the river.
Express the compound proposition $\sim p V(p \Lambda \sim q)$ as an English.
c) Let $A=\{a, b, c, d\}$. The relation $R=\{(a, a),(a, b),(b, c)\}$ is defined on A.

Find R^{2}.
d) What do you mean symmetric closure of a relation ?
e) What is method of Principle of Inclusion-Exclusion?
f) Describe handshaking theorem.
g) What is a Hamiltonian graph ? Give example of a Hamiltonian graph.
h) Is there any Boolean algebra having nine elements ? Justify your answer. chromatic number.
i) Define Ring, Division Ring and Integral Domain.
j) For any two elements a, b of a lattice, show that $a V b=b$ iff $a \leq b$.

Q2 a) Prove that if n is positive integer, then n is even iff $7 n+4$ is even.
b) Prove by Mathematical Induction that for $n \geq 4, n^{3}<3^{n}$.

Q3 a) Solve the following recurrence relations
$a_{n}=-3 a_{n-1}-2 a_{n-2}$ with the initial condition $a_{0}=-2, a_{1}=4$.
b) Solve the recurrence relation by generating function method
$a_{n}=5 a_{n-1}-6 a_{n-2}$ with initial conditions $a_{0}=6, a_{1}=30$.
Q4 a) Let R be a relation from a non-empty set A to a non empty set B and S be a relation from a non-empty set B to a non empty set C. Show that $(\text { RoS })^{-1}=R^{-1} o S^{-1}$.
b) Using Warshall algorithm, find all the transitive closure of
$M_{R}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$
Q5 a) Consider a set of integers from 1 to 250 . Find how many of these numbers are divisible by 3 or 5 or 7 . Also indicate how many are divisible 3 or 7 but not by 5 and divisible by 3 or 5 .
b) If $e>\frac{1}{2}(n-1)(n-2)$ then a simple graph with n vertices and e edges are connected.

Q6 a) Let G be a connected plannar simple graph with ' e ' edges and ' v ' vertices. Then $v-e+r=2$, where r is the number of regions in G..
b) Define a tree. Write the algorithms of postorder, preorder traversal of tree..

Q7 a) Let G be an abelian group with identity element e and $H=\left\{x: x^{2}=e\right\}$ then show that H is a sub group of G .
b) Let $f: G \rightarrow G^{\prime}$ is a group homomorphism. Then show that $f(e)=e^{\prime}$ for $\mathrm{e} \in \mathrm{G}$, $e^{\prime} \in \mathrm{G}^{\prime}$ and $f\left(a^{-1}\right)=(f(a))^{-1} \forall a \in \mathrm{G}$

Q8 a) Show that the set $Z_{7}=\{0,1,2,3,4,5,6\}$ forms a ring under addition and multiplication modulo 7 .
b) Let L be a lattice. Then for any $a, b \in L$, show that
i) $\mathrm{a} V(\mathrm{a} \wedge \mathrm{b})=\mathrm{a}$
ii) $a(\mathrm{a} V \mathrm{~b})=\mathrm{a}$

