Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 2

MSc. MMCC103

1st Semester Back Examination – 2017-18 Discrete Mathematics

Branch: M.Sc.(MC)
Time: 3 Hours
Max marks: 70

Q Code:B913

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) Prove that $\sim \forall x \ [p(x) \to q(x)] \equiv \exists x \ (p(x) \land \neg q(x)).$
- **b)** Let p and q be propositions.
 - p : Swimming in the river is allowed.
 - q : Alligators have been spotted in the river.
 - Express the compound proposition $\sim pV(p\Lambda \sim q)$ as an English.
- c) Let A= $\{a, b, c, d\}$. The relation R = $\{(a, a), (a, b), (b, c)\}$ is defined on A. Find \mathbb{R}^2 .
- d) What do you mean symmetric closure of a relation?
- e) What is method of Principle of Inclusion-Exclusion?
- f) Describe handshaking theorem.
- **g)** What is a Hamiltonian graph? Give example of a Hamiltonian graph.
- **h)** Is there any Boolean algebra having nine elements? Justify your answer. chromatic number.
- i) Define Ring, Division Ring and Integral Domain.
- j) For any two elements a, b of a lattice, show that $a \lor b = b iff a \le b$.
- Q2 a) Prove that if n is positive integer, then n is even iff 7n+4 is even. (5)
 - **b)** Prove by Mathematical Induction that for $n \ge 4$, $n^3 < 3^n$. (5)
- Q3 a) Solve the following recurrence relations $a_n = -3a_{n-1} 2a_{n-2} \text{ with the initial condition } a_0 = -2, a_1 = 4.$
 - b) Solve the recurrence relation by generating function method $a_n = 5a_{n-1} 6a_{n-2}$ with initial conditions $a_0 = 6$, $a_1 = 30$.
- Q4 a) Let R be a relation from a non-empty set A to a non empty set B and S be a relation from a non-empty set B to a non empty set C. Show that $(RoS)^{-1} = R^{-1}oS^{-1}$.

(5)

b) Using Warshall algorithm, find all the transitive closure of

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

- Q5 a) Consider a set of integers from 1 to 250. Find how many of these numbers are divisible by 3 or 5 or 7. Also indicate how many are divisible 3 or 7 but not by 5 and divisible by 3 or 5.
 - b) If $e > \frac{1}{2} (n-1)(n-2)$ then a simple graph with n vertices and e edges are connected. (5)
- Q6 a) Let G be a connected plannar simple graph with 'e' edges and 'v' vertices. Then v e + r = 2, where r is the number of regions in G..
 - **b)** Define a tree. Write the algorithms of postorder, preorder traversal of tree.. **(5)**
- Q7 a) Let G be an abelian group with identity element e and $H = \{x: x^2 = e\}$ then show that H is a sub group of G. (5)
 - **b)** Let $f: G \to G'$ is a group homomorphism. Then show that f(e)=e' for $e \in G$, $e' \in G'$ and $f(\alpha^{-1}) = (f(\alpha))^{-1} \forall \alpha \in G$
- Q8 a) Show that the set $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$ forms a ring under addition and multiplication modulo 7.
 - **b)** Let L be a lattice. Then for any a, b \in L, show that (5)
 - i) $a V(a \Lambda b) = a$
 - ii) $a \Lambda(a V b) = a$