Registration No: http://www.bputonline.com

Total Number of Pages: 02 MCA MCA305

3rd Semester Regular/Back Examination 2017-18 Quantitative Techniques (OR & SM) Branch: MCA

Time: 3 Hours
Max Marks: 100
Q.CODE: B1136

Answer Question No.1 & 2 which is compulsory and any four from the rest.

The figures in the right hand margin indicate marks.

Q1		Answer the following questions by choosing appropriate options given below.	(2×10)
Q I	a)	In simplex method the kind of variable use in " ≤" constrain	(2×10)
	ω,	(i)slack (ii) surplus (iii)artificial (iv) all of these.	
	b)	The values of basic feasible solution are always	
	,	(i)Positive (ii) Negative (iii) At least one positive (iv) At least one negative.	
	c)	is a special case of LPP	
		(i)Transportation (ii) Assignments (iii) (i)&(ii) both(iv)None.	
	d)	A activity which do not take any resource & time known asactivity	
		(i) Predecessor (ii)successor (iii)Dummy(iv)None	
	e)	Objective of queuing system is to minimise	
		(i)Activity time (ii) waiting time (iii) service time(iv)all of these.	
	f)	When number of task of assignment is not equals to number of menthe assignment	
		problem is	
		(i)Unbalance (ii)Restricted (iii)balance (iv) None.	
	g)	A case of disconnect activity before the completion of all activities, known	
		as(i) Leaning(ii) densiting (iii) dense dense (iv) None	
	b \	(i) Looping(ii) dangling (iii) dependency (iv) None.	
	h)	The process by which we generate random variable by random number known as	
		(i)LCM (ii) Analysis of variance (iii)inverse transformation(iv) None.	
	i)	We can solve LPP by graphical method when number variable is	
	-,	(i)more than two (ii) more than equals to two (iii) less than equals to two (iv) all of	
		these.	
	j)	In replacement policy when running cost of (n+1)th year more than the average cost	
	•,	of nth year than replacement due on	
		(i)End of nth year (ii) End of (n+1)th year (iii)both ((i)&(ii)) (iv)None	
Q2		Answer the following questions:	(2 x 10)
	a)	What do you mean by infeasible solution?	
	p)	What do you mean by degeneracy in transportation?	
	c)	Write mathematical formulation of Transportation Problem.	
	d)	What is little's formula?	
	e)	What do you mean simulation?	
	f)	What is meant by replacement policy? Write the uses of artificial variable.	
	g) h)	What do you mean by Kendall notation ?	
	i)	What do you mean by variance reduction technique?	
	j)	What do you mean expected time, how it calculated?	
	J <i>/</i>	What do you moun expected time, now it odiculated:	

Q3 Solve the transportation problem.

	M1	M2	M3	M4	M5	SUPPLY
F1	4	2	3	2	6	8
F2	5	4	5	2	1	12
F3	6	5	4	7	7	14
demand	4	4	6	8	8	

(15)

Q4 Solve the Assignment problem.

	, .ee.g		••					
		JOBS						
		I	П	III	IV	V		
	Α	2	9	2	7	1		
MEN	В	6	8	7	6	1		
	С	4	6	5	3	1		
	D	4	2	7	3	1		
	Е	5	3	9	5	1		

A bakery keeps stock of a popular brand of cake. Previous experience shows the daily demand for the item with associated probabilities, as given below:

 Demand
 0
 10
 20
 30
 40

 Probability
 0.05
 0.15
 0.25
 0.45
 0.10

Simulate for next 10 days by using following random numbers. 25, 39, 65, 76,89,98,45,09,12,56.

A firm is considering the replacement of a machine, whose cost price is Rs 12200, and itsScrap value is Rs200.From experience the running costs are found to be as follows.

year	1	2	3	4	5	6	7	8
Running	200	500	800	1200	1800	2500	3200	4000
cost								

When should the machine be replaced?

Q7 Solve the LPProblem by simplex methods

Max $Z=x_1-3x_2+5x_3$

Subject to $3x_1 + 3x_2 \le 22$,

 $X_1+2x_2+3x_3 \le 14$,

 $3x_1+2x_2 \le 14$,

 $x1, x2, x3 \ge 0$

Q8 The activity of a project and their estimates are given below

Activity	Optimistic Time	Most likely time	Pessimistic time
1-2	2	5	8
1-4	4	19	28
1-5	5	11	17
2-3	3	9	27
2-6	3	6	15
3-6	2	5	14
4-6	3	6	15
5-7	1	4	7
5-8	2	5	14
6-8	6	12	30
7-8	2	5	8

Draw the PERT Network

Find the critical path and the standard deviation for the critical path

(15)

(15)

(15)

(15)

(15)

http://www.bputonline.com