

$3{ }^{\text {rd }}$ Semester Regular/Back Examination 2017-18 Quantitative Techniques (OR \& SM) Branch: MCA
 Time: 3 Hours
 Max Marks: 100
 Q.CODE : B1136

Answer Question No. 1 \& 2 which is compulsory and any four from the rest. The figures in the right hand margin indicate marks.

Answer the following questions by choosing appropriate options given below.

a) In simplex method the kind of variable use in " \leq " constrain \qquad (i)slack (ii) surplus (iii)artificial (iv) all of these.
b) The values of basic feasible solution are always \qquad
(i)Positive
(ii) Negative
(iii) At least one positive
(iv) At least one negative.
c) is a special case of LPP
$\overline{\text { (i)Transportation (ii) Assignments (iii) (i)\&(ii) both(iv)None. }}$
d) A activity which do not take any resource \& time known as \qquad activity
(i) Predecessor
(ii)successor
(iii)
ii)Dummy(iv)None
e) Objective of queuing system is to minimise \qquad -
(i)Activity time (ii) waiting time (iii) service time(iv)all of these.
f) When number of task of assignment is not equals to number of menthe assignment problem is \qquad
(i)Unbalance (ii)Restricted (iii)balance (iv) None.
g) A case of disconnect activity before the completion of all activities, known as
(i) Looping(ii) dangling (iii) dependency (iv) None.
h) The process by which we generate random variable by random number known as
(i)LCM (ii) Analysis of variance (iii)inverse transformation(iv) None.
i) We can solve LPP by graphical method when number variable is \qquad (i)more than two (ii) more than equals to two (iii) less than equals to two (iv) all of these.
j) In replacement policy when running cost of $(\mathrm{n}+1)$ th year more than the average cost of nth year than replacement due on
(i)End of nth year
(ii) End of $(n+1)$ th
\qquad

Answer the following questions:
a) What do you mean by infeasible solution?
b) What do you mean by degeneracy in transportation?
c) Write mathematical formulation of Transportation Problem.
d) What is little's formula?
e) What do you mean simulation?
f) What is meant by replacement policy?
g) Write the uses of artificial variable.
h) What do you mean by Kendall notation?
i) What do you mean by variance reduction technique?
j) What do you mean expected time, how it calculated?

Q3
Solve the transportation problem.

	M1	M2	M3	M4	M5	SUPPLY
F1	4	2	3	2	6	8
F2	5	4	5	2	1	12
F3	6	5	4	7	7	14
demand	4	4	6	8	8	

Solve the Assignment problem.

	JOBS						
MEN		I	II	III	IV	V	
	A	2	9	2	7	1	
	B	6	8	7	6	1	
	C	4	6	5	3	1	
	D	4	2	7	3	1	
	E	5	3	9	5	1	

A bakery keeps stock of a popular brand of cake. Previous experience shows the
daily demand for the item with associated probabilities, as given below:

Demand	0	10	20	30	40
Probability	0.05	0.15	0.25	0.45	0.10

Simulate for next 10 days by using following random numbers. 25, 39, 65, 76,89,98,45,09,12,56.
Q6 A firm is considering the replacement of a machine, whose cost price is Rs 12200, and itsScrap value is Rs200.From experience the running costs are found to be as follows.

year	1	2	3	4	5	6	7	8
Running cost	200	500	800	1200	1800	2500	3200	4000

When should the machine be replaced?
Q7 Solve the LPProblem by simplex methods
Max $Z=x_{1}-3 x_{2}+5 x_{3}$
Subject to $3 x_{1}+3 x_{2} \leq 22$,
$X_{1}+2 x_{2}+3 x_{3} \leq 14$,
$3 x_{1}+2 x_{2} \leq 14$,
$x 1, x 2, x 3 \geq 0$
Q8 The activity of a project and their estimates are given below

Activity	Optimistic Time	Most likely time	Pessimistic time
$1-2$	2	5	8
$1-4$	4	19	28
$1-5$	5	11	17
$2-3$	3	9	27
$2-6$	3	6	15
$3-6$	2	5	14
$4-6$	3	6	15
$5-7$	1	4	7
$5-8$	2	5	14
$6-8$	6	12	30
$7-8$	2	5	8

Draw the PERT Network

Find the critical path and the standard deviation for the critical path

